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Doctor of Philosophy

Abstract

Mobile robotic systems operating over long durations require algorithms that are
robust and scale efficiently over time as sensor information is continually collected.
For mobile robots one of the fundamental problems is navigation; which requires the
robot to have a map of its environment, so it can plan its path and execute it. Hav-
ing the robot use its perception sensors to do simultaneous localization and mapping
(SLAM) is beneficial for a fully autonomous system. Extending the time horizon of
operations poses problems to current SLAM algorithms, both in terms of robustness
and temporal scalability. To address this problem we propose a reduced pose graph
model that significantly reduces the complexity of the full pose graph model. Addi-
tionally we develop a SLAM system using two different sensor modalities: imaging
sonars for underwater navigation and vision based SLAM for terrestrial applications.

Underwater navigation is one application domain that benefits from SLAM, where
access to a global positioning system (GPS) is not possible. In this thesis we present
SLAM systems for two underwater applications. First, we describe our implementa-
tion of real-time imaging-sonar aided navigation applied to in-situ autonomous ship
hull inspection using the hovering autonomous underwater vehicle (HAUV). In ad-
dition we present an architecture that enables the fusion of information from both
a sonar and a camera system. The system is evaluated using data collected during
experiments on SS Curtiss and USCGC Seneca. Second, we develop a feature-based
navigation system supporting multi-session mapping, and provide an algorithm for
re-localizing the vehicle between missions. In addition we present a method for man-
aging the complexity of the estimation problem as new information is received. The
system is demonstrated using data collected with a REMUS vehicle equipped with
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a BlueView forward-looking sonar.
The model we use for mapping builds on the pose graph representation which has

been shown to be an efficient and accurate approach to SLAM. One of the problems
with the pose graph formulation is that the state space continuously grows as more
information is acquired. To address this problem we propose the reduced pose graph
(RPG) model which partitions the space to be mapped and uses the partitions to re-
duce the number of poses used for estimation. To evaluate our approach, we present
results using an online binocular and RGB-Depth visual SLAM system that uses
place recognition both for robustness and multi-session operation. Additionally, to
enable large-scale indoor mapping, our system automatically detects elevator rides
based on accelerometer data. We demonstrate long-term mapping using approxi-
mately nine hours of data collected in the MIT Stata Center over the course of six
months. Ground truth, derived by aligning laser scans to existing floor plans, is used
to evaluate the global accuracy of the system. Our results illustrate the capability of
our visual SLAM system to map a large scale environment over an extended period
of time.

Thesis Supervisor: Professor John Leonard
Title: Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

Despite substantial progress in robotic mapping in the past two decades, many chal-

lenges remain before we can create truly autonomous mobile robots that can safely

and reliably navigate for long durations in dynamic environments. This thesis inves-

tigates the problems of persistence and robustness for robotic mapping, presenting

new algorithms that address temporal scalability in mapping. These approaches are

validated using extensive implementations with real data acquired by a variety of

robotic platforms, operating in both terrestrial and undersea environments.

Long-term deployment of autonomous vehicles has advantages for both scientific

and commercial applications. When studying the oceans there is often interest in

the study of processes such as nutrient and carbon cycles, and bio-diversity, over

long time-scales, which has initiated work towards long term deployments of under-

water vehicles [33]. Another area of interest would be continuous mapping of marine

formations like hydrothermal vents [113]. Routine inspection of marine structures,

such as ship hulls, pier pilings, and pipelines, is another application for long-term or

repeated deployments of AUV’s.
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However, this poses many challenges in terms of power systems, mechanical de-

sign, navigation, and autonomy. In particular, when operating in complex environ-

ments or near the sea floor, precise navigation is of vital importance. In this thesis

we will focus on navigation for both underwater and ground vehicles, and in par-

ticular on mapping and localization for long durations which we refer to as lifelong

mapping.

1.1 Challenges in Localization and Mapping

To achieve long-term robotic autonomy, in complex and dynamic environments, map-

ping algorithms which scale solely with the area explored and not in exploration time

are required. When operating in an unknown environment the robot needs to con-

currently construct a map and localize — this is known as simultaneous localization

and mapping (SLAM). In recent work, Lim et al. [67] report on a state of the art

large-scale visual SLAM system. In conclusion they write:

One interesting future direction is to keep the number of keyframes

and landmarks to a manageable size by merging or trimming redundant

map entries when the robot stays in or visits the same place many times.

This would allow the map size to be proportional to the size of the space

and not to the time spent in the space. [67]

This is the key problem addressed by this thesis. Additionally, long-term persistent

operation will require the ability to develop compact representations, which can ef-

fectively describe an environment of interest, yet still provide robustness to changes

in the environment and recovery from mistakes. Furthermore, when repeatedly sur-

veying the same area we want to localize the vehicle with maps constructed from
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previous operations and eventually combining them into a new up-to-date description

of the environment.

Many recent solutions to mapping are based on the pose graph formulation [68].

In this formulation the world is represented by a set of discrete poses sampled along

the full trajectory of the robot, which are connected by odometry and loop clo-

sure constraints. Very efficient recursive algorithms have been presented which can

maintain an online solution to this continuously expanding optimization problem.

However the pose graph, by design, grows unbounded in time as recognized by [2].

This is true even for small environments which are repeatedly explored, making the

use of the full pose graph unsuitable for long-term mapping.

1.2 Applications of Long-term Mapping

Using perception sensors for autonomous localization and mapping is beneficial for

many applications. In both indoor and underwater domains it is often difficult to

obtain access to external positioning information such as global positioning system

(GPS). Even though underwater long-baseline acoustic navigation (LBL) beacons

are often deployed it is still desirable to operate without any external infrastructure.

Ship Hull Inspection

To ensure safety around their vessels the U.S. Navy routinely carries out a detailed

ship hull inspection on their ships. In recent years there has been extensive de-

velopment of technologies to automate this task [42] — which previously has been

performed by divers and marine mammals. Automating this task is desirable both

from a safety perspective and also to enable new capabilities such as accurate local-

ization of targets, navigation back to targets for close inspection, verifying object
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(a) HAUV - ship hull inspection
vehicle

(b) Remus - survey vehicle

(c) Gavia AUV and an example side scan sonar image from the vehicle.

(d) PR2 - an indoor service
robot

(e) Man portable mapping unit

Figure 1-1: Various mapping platforms

22



removal, and detection of change over time as multiple missions are performed on

the same vessel. The vehicle that was developed for the ship hull inspection is the

hovering autonomous underwater vehicle (HAUV), shown in Figure 1-1(a).

Seafloor Surveying

Another application domain is seafloor surveying. For example Folkesson et al. [31]

used SLAM on a small vehicle to reacquire targets using a prior map, which is created

using a REMUS autonomous underwater vehicle (AUV) (see Figure 1-1(b)) equipped

with good navigation sensors and a side scan sonar. An exciting project for lifelong

autonomy, that will soon go online, is the ocean observatories initiative (OOI) [33].

The OOI consists of a cyberinfrastructure to allow distributed observations of coastal

and deep ocean environments. A part of that system is the Pioneer array which

consists of several AUVs and gliders. An extension to this observatory could be

AUVs equipped with imaging sensors to continuously survey the seafloor around the

sites. In this case having a lifelong SLAM system would be essential. Survey vehicles

would maintain an accurate map of the environment. The maps could then be shared

with inspection vehicles that would use them to safely navigate towards objects of

interest for further investigation.

Service Robots

Robots are useful in many other application domains and have been successfully

deployed in hospitals to help with various delivery tasks for items such as linens and

medicine. To navigate successfully they are provided with floor plans or manually

driven around to construct an initial map. Also RFID tags can be deployed to provide

fixed references [4]. The Willow Garage’s PR2 robot, shown in Figure 1-1(d), has
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successfully operated over extended periods of time using a prior occupancy grid

map, using a laser scanner for localization and obstacle avoidance [71]. However, it

would be beneficial to fully autonomously construct and maintain those maps.

Man-portable Mapping

Even though our main focus is on SLAM in the context of robotics it is also worth

mentioning that the sensors are not required to be carried by a robot to be useful [25].

For example, first responders could be tracked as they enter a collapsed building, and

even though a map existed, the environment might have changed after catastrophic

events like earthquakes or explosions. The responder could be equipped with a

sensor rig as shown in Figure 1-1(e) that would be used to construct a new map of

the environment. Having this map would be useful for keeping track of which areas

had been inspected, knowing the location of the person, and improved situational

awareness for the person carrying the mapping gear.

1.3 Mapping Approach

The two primary services of any mapping system are: 1) provide a map that can be

used for planning, 2) estimate a location and orientation relative to the map so the

planned path can be executed. When constructing the map one should choose an

appropriate representation that will depend on the available sensors, the environment

and the requirements of the application.

Representation

There are many possible representations for the map: feature based maps [94], pose

graphs [68], poses and features, 2D and 3D occupancy grids [97,111], and topological
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graphs [59]. Occupancy grids have been particularly successful for localization and

path planning. Using a graph representation does not exclude their use because

they can be constructed from the information stored in the pose graphs. There are

metric and relative representations, and hybrid approaches [7,67]. In addition to the

core mapping service it can be useful to allow other algorithms, e.g. object detection

and semantic inference, to associate their results to the map. Here the graph-based

representations are useful because the information can be associated to individual

nodes in the graph so their locations get updated as the map estimation proceeds.

While a topological representation would work well in an environment consisting

of constrained passages, a metric representation would be a better choice when op-

erating in an open field with sparse features, as mentioned earlier in the ship hull

application. A metric pose graph implicitly includes the topological graph of the

environment, so any benefits from the graph-based path planners is not lost.

The type of sensor used will also affect the mapping, and the choice of sensor

will depend on the application. When operating underwater, sonars are often used

because of their range and ability to sense in turbid waters. For terrestrial application

laser range finders have been successfully used though they typically require planar

motion when used for SLAM. Cameras are an excellent sensor for localization and

mapping in that they are relatively inexpensive and give rich information about

the environment, facilitating tasks such as recognizing different places and detecting

objects.

In our work we have chosen to use metrically accurate representations, based on

a pose graph formulation both with and without features (see Figure 1.3). Metric

representations fit well with our inspection and target re-acquisition applications.

We will present mapping solutions using both sonars and cameras. In our case we

consider only cameras that provide depth information, i.e. stereo or RGB-D cam-
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(a) Stereo pose graph (b) Feature based map

Figure 1-2: Examples of two maps used in our work. On the left is a pose graph
constructed using a stereo camera. To the right is a feature-based map constructed
using an imaging-sonar on an underwater vehicle.

eras. In addition we also incorporate measurements from other available sensors,

e.g. Doppler velocity log (DVL), pressure and inertial measurement unit (IMU) in

case of the AUVs and wheel odometry and IMU for our indoor application.

Temporal Scalability

Our long-term mapping approach, called the reduced pose graph (RPG), addresses

the temporal scalability of traditional pose graphs. For long-term mapping, the size of

the optimization problem should be bounded by the area of the explored environment

and be independent of the operation time. The reduced pose graph reuses already

existing poses in previously mapped areas, which reduced the number of poses added

to map. A key insight is that new measurements can still be used to further improve

the map, by converting them into constraints between existing poses. The process is

fluid, with new poses being added when new spaces are explored. We also discuss how

the algorithm can be extended to eventually bound the time dependent complexity

of the reduced pose graph.

The advantages of the reduced pose graph extend beyond scalability. Our ap-
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proach maintains multiple constraints between each pair of poses. While these con-

straints could be combined immediately, retaining redundancy allows for consistency

checking and the detection of faulty constraints. In combination with a robust esti-

mator this can limit the effect of erroneous constraints on the state estimation. When

consensus is reached over a significant number of constraints, they can eventually be

combined into a single constraint, avoiding the incorporation of bad constraints into

the combined edge.

Evaluation

To evaluate the reduced pose graph we developed a full 6DoF visual SLAM system.

The system uses either stereo or RGB-D cameras, operates in real-time, and has

been tested with data from multiple robotic platforms. A visual odometry model

produces incremental constraints between key-frames which are used as input to the

reduced pose graph. A place recognition module uses appearance-based methods to

propose loop closures for which a geometric consistency check provides the actual

constraint if successful. Place recognition allows mapping over multiple sessions and

allows re-localization in case of localization failure.

Robustness can be further improved by using other sources of egomotion. In our

work we have utilized wheel odometry and an IMU. An accelerometer is particularly

useful to eliminate drift in inclination, which can accumulate in explorations as large

as those presented here.

We have evaluated our approach on data recorded with a PR2 mobile robot from

Willow Garage equipped with a stereo and an RGB-D camera which are both sup-

ported by our mapping system. Nine hours of data were used, corresponding to

eleven kilometers of robot trajectory recorded over a six month period. To allow
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for operation in large multi-floor indoor environments, our SLAM system can auto-

matically detect elevator transitions. Using an accelerometer, this approach detects

characteristic elevator motion to track the vertical displacement of the robot.

1.4 Contributions

This thesis makes the following contributions:

1. We present an imaging-sonar based SLAM system that was applied to au-

tonomous ship hull inspection [42,46].

2. We describe a multi-session feature based SLAM system for an underwater

vehicle equipped with a forward looking sonar.

3. We develop a complete pose graph based visual SLAM system [47].

4. To manage the time complexity of the pose graph we propose and evaluate a

reduced pose graph model [47].

5. Finally, we present an efficient GPU based scene prediction algorithm that was

applied to localization using an RGB-D camera [25].

1.5 Overview

In this section we give an overview of the thesis.

Chapter 2 defines the SLAM problem and reviews prior work in that area. We

introduce notation and other preliminaries required for the rest of the thesis.

28



Chapter 3 develops an imaging-sonar aided navigation algorithm that is applied

to ship hull inspection. In addition, multi-session feature-based navigation for

AUVs is described, using a feature-based pose graph map representation.

Chapter 4 introduces a visual SLAM system that uses a pose graph representation

and fuses additional sensor input from wheel odometry and IMU sensors —

allowing mapping of large spaces in a multi-floor building.

Chapter 5 extends the visual SLAM system, introduced in the previous chapter,

to address temporal scalability when operating repeatedly in the same envi-

ronment, using a reduced pose graph representation.

Chapter 6 describes a localization application of the visual SLAM system when

RGB-D cameras are available. This is achieved using an efficient graphical

processing unit (GPU) based depth image prediction algorithm.

Chapter 7 concludes the thesis with a review of the main contributions of the work

presented in the thesis and a discussion of future research topics.
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Chapter 2

SLAM Literature Review

In this chapter we will give an overview of major developments on the SLAM problem

and in particular review work in the area of lifelong operations. We will review the

theoretical background of the SLAM problem and introduce notation used in the

rest of the thesis.

2.1 Overview of SLAM

Some of the early work on SLAM includes the seminal paper by Smith et al. [94].

They posed the problem in a probabilistic framework by using measurements of

spatial relations and proposed using an Extended Kalman Filter (EKF) to estimate

the first and second moments of the probability distribution for the relations. This

method was used with landmarks and sonar range measurements by Leonard et

al. [66]. They noted that the size of the state vector would need to grow linearly

with the number of landmarks and it was necessary to maintain the full correlation

between all the variables being estimated, thus the algorithm scales quadratically,
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O(N2), with the number of variables, N , in time and space.

The Sparse Extended Information Filter (SEIF) was developed by Thrun et

al. [100] to address these scalability issues. It used the information form of the

EKF in combination with a sparsification method. A drawback of that approach

was that it produced over-confident estimates. That was addressed in the exactly

sparse delayed-state filters (ESDFs) by Eustice et al. [20, 22] and later with the

Exactly Sparse Extended Information Filter (ESEIF) by Walter et al. [105].

Particle filters have also been used to address the complexity and data associa-

tion problem. The estimates of the landmark locations become independent when

conditioned on the vehicle trajectory. This fact was used by Montemerlo et al. [75]

to implement FastSLAM. The main drawback with the particle filters is that there is

always the risk of particle depletion. This is especially the case in the SLAM prob-

lem which is very high dimensional. Monte Carlo localization (MCL), which uses

a particle filter, has also been successful given static prior maps and was used by

the museum guide Minerva [98]. More recently MCL has been used with a RGB-D

camera to localize in a complex 3-D environment [26].

One of the problems with the filtering approaches is that at each step the mea-

surements are linearized around the current estimate. This can cause inconsistency

of the estimate [48]. Also, before a loop closure is applied the current estimate can

be far from the true value. It is also difficult to apply delayed measurements or revert

a measurement that has been applied to the filter. The Atlas framework by Bosse

et al. [5] addresses these issues by combining local sub-maps and a nonlinear opti-

mization to globally align the sub-maps. Each sub-map has its own local coordinate

so the linearization point will not deviate as far from the true value as it does in the

case of global parametrization.

The pose graph optimization approach to SLAM was first introduced by Lu and
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Milios [68] and further developed by many researchers including Gutmann and Kono-

lige [37], Folkesson and Christensen [28], Dellaert [14] and Olson et al. [82]. Signif-

icant research has focused on providing efficient solutions, both approximate and

exact. There have been many recent extensions to pose graph SLAM to address op-

timization efficiency. Notable recent examples include: hierarchical representations

(Grisetti et al. [35]), collection of local maps (Bosse et al. [6]; Estrado et al. [19];

Ni et al. [78]) as well as relative and non-Euclidean (Newman et al. [77]; Sibley et

al. [92]) approaches. However few have addressed reducing the growth in size of the

number of pose graph nodes as a function of time.

The SLAM problem can be modeled as a graph where the nodes represent the

vehicle poses and landmarks. The edges are constraints on these variables and are

derived from sensor measurements. Often only the poses are estimated and not the

landmarks explicitly. By associating probability distributions to the constraints the

graph can be interpreted as a Bayes network. If it is assumed the measurements

are corrupted by zero-mean Gaussian noise then the maximum likelihood solution of

the joint probability distribution can be found by solving a nonlinear least squares

problem. That is the approach Dellaert et al. used in the square root smoothing and

mapping algorithm [14, 15]. It used Cholesky factorization to efficiently solve the

normal equations of the sparse least-squares problem. Furthermore, they related the

graphical model to the matrices associated with the linearized optimization prob-

lem. The downside is that the problem grows with time instead of the size of the

environment. How to extend this to cases of lifelong mapping is one of the problems

investigated in this thesis.

An extension to this method is the incremental Smoothing and Mapping (iSAM)

that was developed by Kaess et al. [53]. In iSAM the Cholesky factorization is

incrementally updated using Givens rotations, making the method better for on-
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line operations. In addition they developed an algorithm for recovering parts of the

covariance matrix, which is useful for on-line data association decisions. Working

directly with the graphical model, the Bayes-Tree [51] algorithm was developed and

used in iSAM 2.0 [52]. The algorithm works by constructing and maintaining a

junction-tree which enables implementation of fluid re-linearization and incremental

variable re-ordering.

Another incremental method is HoG-Man [35], which trades accuracy for speed by

creating a hierarchical approximation to the full estimation problem. These methods

belong to the class of direct solvers. Another class of algorithms are iterative solvers

like the stochastic gradient descent which was used in Olson’s work [82] and Grisetti’s

TORO [36].

Recently Sibley et al. [91] and Mei et al. [72] have proposed using a relative

parametrization for visual SLAM. They argue that a locally accurate map is sufficient

to find the shortest paths between places. The benefit of the relative parametrization

is that the updates are local even for large areas as they have demonstrated in their

work.

Many sensors have been used for the SLAM problem, including: sonars, laser

range finders and cameras. With increasing computation power and the availability

of inexpensive cameras, using vision in SLAM has become increasingly popular. Both

monocular [13,57] and stereo vision [60] have been used to estimate egomotion. One

of the more difficult challenges in SLAM is recognizing when a place is revisited.

Inspired by text-based search engines like Google, Sivic et al. [93] proposed learning

visual words and then using inverted indexes, as is used for document retrieval, to

search for similar images. This was later used by Cummins et al. [12] in FAB-MAP,

which uses the visual appearance of places to localize and construct a topological

map of the world. Other similar approaches are the vocabulary tree by Nister et
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al. [80] which was used in Konolige’s visual maps [61].

Also, more recently inexpensive RGB-Depth cameras have become available. The

RGB-D camera poses interesting new questions, as it is both a color camera and a

depth sensor based on stereo vision. Because it is an active system, its range is limited

compared to that of a regular stereo camera. These two sensor modalities, the sparse

features and dense point clouds, can complement each other [41], and considering

different ways to use this large amount of 3D data is an interesting research problem.

2.2 Underwater navigation

Navigation is a challenging and important capability for underwater vehicles. Kin-

sey et al. provide a comprehensive survey of available AUV navigation sensing op-

tions [56]. Pressure sensors are frequently used to measure the depth of the vehicle

from the surface. The vehicle speed can be estimated with a motion model and a

propeller count. For more accurate navigation Doppler Velocity Logs (DVLs) are

used, which provide the vehicle velocity relative to a surface, and also measure ve-

locity relative to the water. For orientation, magnetic compasses are used as well

as gyroscopes, including fiber optic gyro (FOG) and ring laser gyro (RLG). Inertial

measurement units (IMU) measure acceleration and can further improve navigational

accuracy, giving a measure of the gravity vector. Finally, for high-precision surveying

these sensors are often combined into an inertial navigation system (INS) providing

accuracy up to 0.05% of distance traveled [83].

The sensors mentioned above provide basic dead reckoning for the vehicle, but the

position estimate will drift over time. To bound the navigational drift, time of flight

measurements with acoustic beacons are commonly used in underwater navigation

[108, 109, 114]. Long baseline (LBL) and ultra-short baseline (USBL) sytems have
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proven successful in various applications, such as underwater archeology [74] and

ship hull inspection [39].

In some situations, e.g. when there is no direct line of sight, or when the environ-

ment causes multi-path returns, it can be beneficial to use SLAM with the vehicle

perception sensors to bound the drift of the vehicle navigation instead of deploying

acoustic beacons. This saves time by not having to deploy and calibrate the beacons.

There have been various approaches based on using both sonars and cameras. Eustice

et al. [21] proposed a view-based approach using constraints from overlapping cam-

era frames using an information filter to estimate vehicle pose. Building bathymetry

submaps and aligning them together in an EKF framework was used by Roman et

al. [88]. Ribas et al. [87] and Mallios et al. [69] mapped structured environments us-

ing an Extended Kalman filter with scanning sonars and a scan matching alignment.

A particle filter for a 3D occupancy grid was used by Fairfield et al. to navigate a

cave inspection vehicle [23]. In work by Folkesson et al. [30], a forward-looking sonar

was used with a prior map to track features in sonar images and use them to local-

ize the vehicle. Imaging sonars have also been used as navigation aids in ship-hull

inspection using either filtering [18,104] or smoothing [46] for the map estimation.

Recently Kunz used a factor graph representation and a nonlinear solver to perform

accurate mapping of moving ice floes using cameras and multibeam sonars [65].

2.3 Approaches to Lifelong Mapping

Some of the early work on lifelong SLAM is the adaptive place network by Yamauchi

et al. [112], which is a topological roadmap that updates confidence on links as

the robot traverses them; learning environmental configuration using lasers scans

by Stachniss et al. [95]; and tracking samples from the environment at different
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timescales by Biber et al. [1, 2]. An initial map is created with traditional SLAM

methods, and then updated at multiple different time scales to capture dynamic

changes in the environment. The map is represented by a set of evolving grid-based

local maps connected to an underlying pose graph. They demonstrate long-term

mapping using several hours of data recorded over five weeks. This work is specific

to laser-range data.

The ATLAS framework by Bosse et al. [6] made important contributions in graph

formulation, robustness by cycle verification and uncertainty estimation using Dijk-

stra projection, although it did not address lifelong mapping in particular. A relative

formulation is used, though it is pointed out that a global estimate can be achieved

by finding a global configuration of all the submaps that minimize the error of edges

between submaps.

Compact pose SLAM by Ila et al. [45] uses an information-theoretic method to

decide which constraints should be added. New poses are added to the estimator

(an information filter) only if no other poses are nearby, while taking into account

information gain from potential loop closures. The paper does not address how to

limit growth when continuously operating in the same environment. In contrast, our

approach can connect constraints to existing poses in areas already mapped — so as

to avoid the need for the periodic addition of new nodes along the trajectory.

Kretzschmar et al. [63, 96] also use an information-theoretic approach to decide

which laser scan should be removed from the graph. They have shown large reduc-

tions in complexity for laser-based pose graphs, using an approximate marginalization

to retain the sparsity of the solution.

An algorithm for complexity reduction was proposed by Eade et al. [17]. The

reduction consists of marginalization and degree thresholding. When the degree of a

node exceeds a given threshold the constraint with the least residual error is removed.
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This heuristic will cause a bias in the estimate, e.g. for repeated passes through the

environment the measurements that survive are those with the largest residual error.

The visual maps by Konolige et al. [62] are closely related to our work. They

create a skeleton graph of views similar to a pose graph. To keep the density of views

or poses constant in a given region, least-recently used views are removed from the

skeleton by marginalization. Our work, in contrast, partitions the environment and

avoids adding redundant views to begin with. Other related recent work in multi-

session visual SLAM was presented by McDonald et al. [70], which combines multiple

mapping sessions in a pose graph optimization framework, with appearance-based

loop closing [9], however this work did not address temporal scalability.

The dynamic pose graph [103] explicitly looks for changes in the environment

and removes nodes where the environment has changed. The main limitation of this

approach is that the temporal scalability will depend on how rapidly the environment

changes. Instead we conjecture that it is sufficient to track an active set of poses

that covers the environment. Where given a partitioning of the space, and each pose

sees some of the partitions, then the cover is a set of poses that see all the partitions.

For monocular SLAM, a different approach without pose graphs has been taken

for managing complexity when repeatedly mapping the same environment. Most

notably, Klein et al. [57, 58] introduced monocular parallel tracking and mapping

(PTAM), where a map of sparse features is updated over time by bundle adjustment,

and the camera is continuously localized based on this map. Targeting augmented

reality applications, the original formulation of PTAM was limited to small scale

environments, mostly because of the complexity of bundle adjustment.

An extension to augmented reality applications to large-scale environments using

several local PTAM maps is demonstrated by Castel et al. [10]. More recently, Pirker

et al. [85] proposed larger scale monocular reconstruction, again based on bundle
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adjustment. Their system updates the map in dynamic environments and achieves

real-time performance with the exception of loop closures.

A completely different approach to long-term mapping is taken by Milford et

al. [73] in biologically inspired work. Their RatSLAM system used panoramic video

and odometry as perceptual stimuli. While their work does not try to produce Carte-

sian maps, they have demonstrated impressive long-term mapping and navigation in

dynamic environments.

2.4 Simultaneous Localization and Mapping

The SLAM problem can be formulated in the following way. Let X = {xi} be the

robot’s pose at discrete time steps i = 1, · · · , N . The robot has a motion model

given controls U = {ui}. The motion model can be described as a function from

the previous state and given controls to a new state. Because of sensor noise and

uncertainties in the motion model it is common to model the process noise as zero-

mean additive noise as in the following equation

xi =f(xi−1, ui−1) + wi wi ∼ N (0,Σi) for i > 0 (2.1)

with an initial condition for x0.

If the robot uses only this information then it is simply doing dead-reckoning

(DR) and the position error relative to past states will grow unbounded. This is the

core of the SLAM problem. The robot needs to use some of its sensor measurements

to recognize that it has arrived at a previously visited place and compute its position
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Figure 2-1: Graphical model for feature based SLAM for N poses, M landmarks,
and K landmark measurements.
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Figure 2-2: Graphical model for a pose graph.
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relative to that place. This adds a sensor measurement to the formulation

zk = h(xi, xj) + vk vk ∼ N (0,Λk) (2.2)

where zk is the k-th measurement. This is commonly referred to as pose graphs [82].

It is also possible to explicitly include landmarks in the state estimation as shown in

Figure 2-1. Then the measurement function changes to

zk = h(xi, lj) + vk vk ∼ N (0,Λk) (2.3)

A natural solution is to consider the joint probability distribution over all the

variables, which is given by the probability density function p(X,Z, U) and is pictured

as the graphical model in Figure 2-2 for the pose graph or in the landmark case

p(X,Z, L, U).

The graphical model for the pose graph is equivalent to:

p(X,Z, U) = p(x1)
N∏
i=2

p(xi|xi−1, ui−1)
∏
(i,j)

p(zk|xi, xj) (2.4)

The graphical model shows the common assumption of a Markovian motion model

which makes it feasible to solve the problem efficiently.

2.4.1 Filtering

The map can be estimated by filtering. In the landmark case one is interested in

computing the posterior p(xt, l1:kt|z1:t, u1:t) which can be computed recursively [99]

p(xt, l1:kt |z1:t, u1:t) =
p(zt|xt)
p(xt)

∫
p(xt|ut, xt−1)p(xt−1, l1:kt−1|z1:t−1, u1:t−1)dxt−1 (2.5)
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If the errors are normally distributed and the functions linear, then this distri-

bution is a multivariate Gaussian distribution and can be solved recursively using

a Kalman Filter (KF). If the functions are nonlinear, then an Extended Kalman

Filter (EKF) can be used by linearizing around the current estimate, which is an

approximation to the full filter presented above. A recursive solution is of particular

interest for robotics applications because the data are acquired on-line as the vehicle

navigates around the environment.

The filtering approach poses several challenges of computational complexity and

accuracy as more information is acquired. As previously mentioned, some of the

computational complexity challenges have been addressed with the information form

of the EKF. One limitation that relates to robustness is that when using filtering

there is no easy way to remove previous measurements if it is discovered that a

measurement is incorrect. Additionally the linearization point cannot be changed at

a later time. This is an issue if the mean changes drastically when loop closures are

later applied.

2.4.2 Smoothing

Recently there have been many advancements using smoothing of the full trajectory

for the SLAM problem, which is the approach taken in this thesis. Smoothing, in

contrast to filtering, solves for all the poses and repeatedly re-linearizes the problem

as the trajectory estimate is updated. Smoothing has several advantages over filtering

approaches. First, data association does not need to be fixed for all time. If, at a later

time, the data association decision is determined to be incorrect, it is easy to recover

from that by simply removing the measurement. Secondly, when measurements

are applied they do not need to be fixed at a single linearization point but can be
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adjusted as the estimate improves. Finally, in many cases solving the full problem

can be computationally more efficient because it retains the sparsity of the problem.

When smoothing we are interested in the full posterior p(X|U,Z). One solution

is to compute the maximum likelihood estimator X∗ by

X∗ = argmax
X

p(X|Z) = argmax
X

M∏
k=1

p(zk|Xk) (2.6)

(2.7)

= argmin
X

M∑
k=1

− ln p(zk|Xk) (2.8)

and for distributions of the form p(zk|Xk) ∝ eCk(f(Xk)−zk) we get the following non-

linear optimization problem

X∗ = argmin
X

∑
k

Ck (f(xik , xjk)− zk) , (2.9)

where f is a function that predicts a constraint from two poses and Ck is a cost

function associated with constraint k. The same solution applies to the traditional

pose graph with the only difference being the way that constraints and nodes are

created. For a Gaussian error distribution the cost function is the Mahalanobis

distance.

Another convenient graphical representation for the model are factor graphs [64],

an example of which is pictured in 2-3. A factor graph is a bipartite graph G =

(F ,X , ε) with two node types: factor nodes fi ∈ F and variable nodes xj ∈ X .

Edges eijε are always between factor nodes and variable nodes. The factor graph
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Figure 2-3: A factor graph equivalent to the Bayes network in Figure 2-2.

defines a factorization of a function fX as

f(X) =
∏
i

fi(Xi) (2.10)

where Xi is the set of variables that connect to fi. Looking at the factorization we

presented earlier for the posterior p(X|U,Z) we see that the measurement models

p(z|Xk) map directly to factors. One of the benefits of this is that it is easy to

make the factorization explicit and it is close to the actual implementation of the

optimization algorithm.

In this chapter we have provided an overview of SLAM. In addition we described

the pose graph formulation and the pose graph with landmarks. In the following

chapters we will use these models for localization and mapping using both imaging-

sonars and cameras. Furthermore, we propose the reduced pose graph to address the

temporal scalability issues of the full pose graph formulation.
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Chapter 3

Multi-session Feature-based

Navigation for AUVs

The oceans cover a large portion of our planet; they are rich in resources, impor-

tant for transportation, and play a major role in Earth’s climate. Thus underwater

operations have gained much interest by several groups, including oceanographers,

oil-industry, and the world’s navies. The use of autonomous underwater vehicles

(AUVs) is playing larger and larger role in many areas such as under-ice operations,

mine-countermeasures, harbor surveillance, and pipeline inspection, to name a few.

For underwater vehicles, accurate navigation is important for avoiding any haz-

ards in the environment and can save operation time by enabling precise execution

of the planned trajectory. This has resulted in development of accurate navigation

sensors like, Doppler velocity log (DVL) for velocity, and a fiber optic gyro (FOG) for

accurate orientation. In addition external acoustic beacons like long-baseline (LBL)

and ultra-short baseline (USBL) are a common option to provide accurate naviga-

tion and correct for long-term drift. Still it is desirable to have accurate navigation
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(a) HAUV - Ship hull inspec-
tion vehicle

(b) REMUS 100 - Survey vehicle

Figure 3-1: The two vehicles used for the experiments described in this chapter. The
HAUV, shown on the left, was used for the experiments that will be presented in
Section 3.2. The REMUS vehicle, shown on the right, was used for the experiments
that will be presented in Section 3.3.

without the support from any external infrastructure.

In this chapter we will explore two methods that use a sonar system to aid the

vehicle navigation system. First, we will present an imaging-sonar aided navigation

for ship hull inspection, which extends our previous work on using imaging-sonar

for harbor surveillance [46]. Here we estimate the full 6DoF pose of the vehicle

and no longer assume a horizontal ground plane for the image registrations. In

addition we describe an architecture that was developed to allow joint estimation

using constraints from a sonar and a camera. For details on the vision system the

reader is referred to [54, 55]. Second, we present a sonar based multi-session feature

based navigation system for AUVs. In this work a REMUS 100 vehicle equipped with

a forward-looking imaging sonar was used. The two vehicles used in these projects

are shown in Figure 3-1.
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(a) Camera target (b) Sonar target

Figure 3-2: A comparison of a target seen by a camera and an imaging sonar.

3.1 Sonar Imaging

Light attenuates rapidly underwater resulting in limited range when using vision

underwater. Particles in the water cause backscatter, making it difficult to see in

turbid waters. On the other hand, sound propagates well underwater — even in

turbid conditions — making the use of sonar systems common underwater. The

drawback of using sonar includes lower resolution, lack of color information and

often noisy images. A comparison of a camera and a sonar view of a target on a ship

hull is shown in Figure 3-2. The camera gives much better details, while the target

can be detected farther away using sonar.

A sonar works by transmitting a sound wave and then listening for the incoming

sound as it is reflected from surfaces it hits along the way. The intensity of the

return will depend on many factors: surface properties, incidence angle, distance,

the transmission power, and the transducer beam pattern. For example, a muddy

bottom will give a weak return, while the edge of a protruding rock will have a

strong return and might also cast a shadow — depending on its height. These strong

returns and shadows are common features that both human operators and detection
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(a) Forward-looking imaging sonar (b) Side scan sonar

Figure 3-3: Example of different type of sonars.

algorithms use to analyze the sonar images. An illustration of the imaging process

is given in Figure 3-4.

One of the earlier sonar systems used for imaging is the side scan sonar (see Fig-

ure 3-3(b)), which images a single line with each ping. On the other hand the sonars

used in the work presented here sample from multiple directions simultaneously, e.g.

the DIDSON sonar used in the ship hull inspection has 96 beams with 28 degree field

of view and the BlueView has 512 beams with 90 degree field of view. These type of

sonars are often referred to as imaging sonars, or multi-beam sonars when used for

bathymetry measurements.

The beams of the imaging sonar provide a fixed field of view in front of it. The

convention is a right handed coordinate system with x-axis pointing forward, y-axis

to the right and z-axis down which is illustrated in Figure 3-5. The angle θ is a

rotation around the z-axis giving the angle from the x-axis to a particular beam,

and the elevation is φ which is the angle from the x− y plane.

The measurements from the sonar are provided as intensity, a beam number, and

range (strictly speaking, the range is provided as a time). Thus it can be convenient
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Figure 3-4: A high-level illustration of the sonar imaging process. First the sonar
transmits an acoustic wave; the intensity of the reflected sound is then recorded at
fixed intervals. The returned intensity will depend on various factors like surface
properties, incidence angle, distance, the transmission power, and the transducer
beam pattern. The plot on the bottom illustrates what the intensity might look like
as a function of time along a single beam.

49



to think of the measurements in spherical coordinates s = [r θ φ]T

s =


r

θ

φ

 =


√
x2 + y2 + z2

arctan 2(y, x)

arctan 2
(
z,
√
x2 + y2

)
 (3.1)

where p = [x y z]T are the Cartesian coordinates of a point in the sonars frame of

reference. The transformation from spherical coordinates to Cartesian coordinates

is provided by

p =


x

y

z

 =


r cosφ cos θ

r cosφ sin θ

r sinφ

 (3.2)

(3.3)

One difficulty is that the sonar does not provide a measurement of the elevation

φ. We address this problem in two different ways: a) in the ship hull inspection we

assume a locally flat plane, b) in the feature based navigation we estimate the 3D

feature position by minimizing the reprojection error for multiple measurements. In

the next two sections we will look at these approaches in more detail.

3.2 Ship Hull Inspection

In this section we present an imaging-sonar aided navigation system for underwater

ship hull inspection, which extends the work on harbor surveillance presented in [46].

The work presented here has been published in [42]. The contribution of this thesis to

that work is the sonar processing, and an architecture for distributed state estimation
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Figure 3-5: Imaging sonar geometry.

enabling the incorporation of camera constraints along with the sonar measurements.

The vehicle used for the ship hull inspection is the Hovering Autonomous Un-

derwater Vehicle (HAUV). Its current generation is the Hull Unmanned Underwater

Localization System (HULS) — developed by Bluefin Robotics — and is described in

detail in [102]. It is equipped with a DVL, IMU, pressure sensor, DIDSON imaging

sonar, and a camera. As shown in Figure 3-6(a) it has six thrusters, allowing the ve-

hicle to hover in place; this is essential to accurately track the hull of the ship. When

inspecting the non-complex part of the ship the vehicle operates in hull-relative mode

and the actuated DVL is pointed toward the hull to keep a fixed standoff. The sonar

points to the side of the vehicle, viewing along the hull. The camera is oriented in

the same way as the DVL — pointing directly at the hull. The HAUV in relation to

a ship hull and the sensor footprints are shown in Figure 3-6(b).
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Camera

DVL

DIDSON Sonar
LED Light

Thrusters

(a) The Bluefin-MIT Hovering Au-
tonomous Underwater Vehicle (HAUV)

(b) The HAUV inspecting a ship hull

Figure 3-6: Ship hull inspection with the HAUV

3.2.1 State Estimation

The estimated vehicle state consists of its position and orientation at different times

during the mission. The position is represented in 3D Cartesian coordinates (x, y, z)

and the orientation as the Euler angles (φ, θ, ψ) for roll, pitch and yaw respectively.

Internally during the optimization the orientation is represented as a unit quaternion.

The vehicle coordinate frame is oriented such that x points forward, y to starboard

and z points downward.

The pose graph can then be represented as a factor graph G = (X,U, S, f, g)

where X = xi|i = 1...N are the vehicle poses, U = ui|i = 1...N − 1 are the vehi-

cle dead reckoning measurements, and S are the sonar measurements derived from

aligning two sonar views. The factor f predicts the sequential motion

xi+1 = f(xi, ui) (3.4)
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and g the sonar measurement

sk = g(xik , xjk , α, β) (3.5)

where sk = [x, y, θ] is the 2D transformation between the two sonar frames projected

in the plane of the sonar, α and β are the two angles of the rotary actuators that

are used to rotate the sonar.

This model is similar to the standard pose graph formulation. The variables of

interest are poses along the vehicle trajectory, and the measurements are constraints

between the poses. In this case the constraints from the sonar provide partial con-

straints, i.e. they are 3DoF while the vehicle pose is 6DoF. The dead reckoning from

the vehicle provides 6 constraints between poses so the problem is well posed. In

addition to the relative measurements the vehicle also has an IMU and a pressure

sensor, allowing us to further constrain the depth, roll and pitch of each pose. Fi-

nally, the estimated state is provided by the maximum likelihood estimate of the

distribution P (X|U, S) and is computed using iSAM — a nonlinear least squares

incremental solver.

3.2.2 Sonar Frame Alignment

To correct drift in the navigation the current sonar image is aligned with a previously

seen image. The approach taken is motivated by laser scan matching, which has been

successfully used for ground vehicles. A set of dense features is extracted from each

image and they are aligned using the normal distribution transform (NDT) scan

matching algorithm [3].
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Feature Extraction

The individual point measurements in a sonar image can be roughly categorized into

background, highlights and shadows. The highlight normally comes from objects

protruding from the surface which can cast a shadow on the background. The ap-

proach we take to feature extraction is to examine the intensity gradient along each

sonar beam, allowing us to detect the edges of objects on the surface we are imaging.

We look only at the gradients along the beams and detect transitions close to the

object. This is to avoid effects from shadows from tall objects. A shadow farther

out can move significantly with different viewpoints.

An example of the different steps of the algorithm is shown in Figure 3-7. For

illustration purposes the images have been projected into 2D Cartesian coordinates.

The input sonar image is shown in Figure 3-7(a). Initially the image is smoothed

to remove high frequency noise (Figure 3-7(b)). Next, a gradient is computed along

each sonar beam (Figure 3-7(c)). An adaptive threshold on the gradient is then used

to select a fixed fraction of the points. This is to account for variability in the viewing

angle and the objects inspected. If there are no objects in the image the top fraction

tends to be spread around the image and is discarded during the clustering stage

(Figure 3-7(e)). After the points have been selected based on the gradients they are

projected into a 2D Cartesian image. The points are clustered, and points that have

few neighbors are eliminated. The final result is shown in Figure 3-7(f). The output

is provided as a collection of 2D points that are used to align with existing frames,

or stored for later reference.
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(a) Initial sonar image (b) Smoothed (c) Gradient

(d) Threshold (e) Clustering (f) Extracted Features

Figure 3-7: Intermediate steps of the feature extraction process. The extracted
features are shown in red.
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Alignment

After the features have been extracted they are projected into a 2D Cartesian coor-

dinate frame. The Cartesian projection of the point p is provided by

Î(p) =

 u

v

 =

 r cos θ

r sin θ

 (3.6)

This projection can be viewed as an approximation to an orthographic projection

looking down the z-axis. These points are then used for the alignment. As mentioned

earlier the alignment algorithm used is the NDT algorithm. It works by constructing

a grid over the scan and then, for each grid cell, the mean and covariance of the

points in that cell are computed. This is called the NDT of the scan and serves

as the model for the registration. The alignment is then computed by minimizing

the cost between the incoming scan and the model. The cost of each point is the

Mahalanobis distance (using the mean and covariance computed previously) from

the cell the point is associated to. Examples of the alignment procedure, in different

environments, are given in Figure 3-8.

3.2.3 Distributed State Estimation

In this section we describe the architecture of a distributed state estimation system

that was developed for the ship hull inspection project. The motivation for this work

was to enable the team from MIT and University of Michigan to work independently

on the sonar and camera systems respectively while still sharing the same state

estimation machinery and vehicle communication.

The system is structured into individual nodes: state estimation, sonar process-

ing and camera processing. The nodes communicate using the lightweight commu-

56



(a) Frame A (b) Frame B (c) Registration of A and B

(d) Frame A (e) Frame B (f) Registration of A and B

(g) Frame A (h) Frame B (i) Registration of A and B

Figure 3-8: Registration of two sonar frames showing the extracted feature and the
two scans before and after registration. Red points show the model scan, green fea-
tures the current scan.The right-most column shows the two scans after registration.
Each row is from a different environment. Top: The riverbed in the Charles River;
there are many distinctive features. Middle: From the USCGC Venturous; there are
a lot of barnacles on the hull making it very feature rich. Bottom: SS Curtiss; here
the ship hull is very clean and the extracted features are primarily from structures
under the hull. 57



Figure 3-9: Overview of the state estimation architecture used for the ship hull
inspection. The camera client was implemented by the University of Michigan and
is not described here.
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nication and marshaling (LCM) library [43] and can be distributed across multiple

computers. In addition to nodes responsible for the state estimation there are nodes

for communicating to the vehicle and the DIDSON sonar. An architecture diagram

is shown in Figure 3-9.

The mapping server manages the map estimation. It receives vehicle navigation

information from the vehicle and uses it to track the vehicle trajectory. Periodically

the mapping server issues loop proposals if it is determined that the vehicle is within

range of an existing view. This is determined by the distance between the current

pose and another pose that is already in the map. When a sensor node receives

a proposal, it uses the stored view information to verify the link, and report the

transformation between the two views. In order to create a loop closure a node must

be added to the pose graph. The sensor node can issue requests to the mapping

server to add nodes at specific times. The sensor nodes are responsible for managing

the sensor information required for loop closures. Additionally, the sensor nodes can

also propose loop closures which enable sensor specific loop proposal mechanisms,

similar to appearance based methods using vision.

This architecture worked well in building a shared state estimation. The LCM

tools were particularly convenient for data logging and playback during development

and testing of the system. In addition to the state estimation, a set of common

visualization tools were developed using the Libbot library1. These tools were later

extended to work as an operator console during the experiments, as described in the

next section.

1Libbot is a library that was developed by MIT students during the DARPA Grand Challenge
2007. This code is available at http://sourceforge.net/p/pods/home/Home/. One of the com-
ponents is a viewer framework that integrates well with LCM.
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(a) SS Curtiss. (b) USCGC Seneca.

SS Curtiss USCGC Seneca

Length 183 m 82 m
Beam 27 m 12 m
Draft 9.1 m 4.4 m
Displacement 24,182 t 1,800 t
Propulsion Single-Screw Twin-Screw

(c) Vessel characteristics.

Figure 3-10: Two vessels on which the HAUV has been deployed.

3.2.4 Results

To evaluate the system we used data from two experiments carried out on the SS

Curtiss and the USCGS Seneca. In the experiments on the USCGS Seneca the

system was run on-line in a combined mode, using both the camera and the sonar

to aid the navigation. The benefit of the system was demonstrated by having a

human operator set waypoints when interesting objects showed up on the sensor.

Later the operator directed the vehicle to revisit some of these targets. The system

successfully navigated to the object, illustrating the benefits of the online SLAM

system. Finally, we evaluate the accuracy of the imaging-sonar aided navigation

using a 2 hour sequence collected in the Charles River.
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Ship Hull Inspection

During the course of the project, experiments were carried out on several ships. Here

we will report on results from two of these experiments: the USCGS Seneca and the

SS Curtiss. Information about these two vessels is provided in Figure 3-10.

During the operations on the USCGS Seneca the system was run on-line com-

bining corrections from the sonar (MIT) and camera (U.Mich). The experiment was

set up such that the vehicle started on a regular survey. A human operator moni-

tored the information from the sensor. If interesting objects were observed she could

mark the current position of the vehicle as a viewpoint. Later the operator could

choose to direct the vehicle back to that waypoint by issuing a simple command. An

illustration of the operator view is provided in Figure 3-11. The vehicle navigated

accurately back to the target, demonstrating the benefit of having the online SLAM

navigation.

Figure 3-11: Operator view during a survey mission.

Examples of an estimated trajectory from the trials is shown for SS Curtis in

Figure 3-12 and USCGS Seneca in Figure 3-13. The red lines are the smoothed

trajectory. Gray lines are dead reckoning from the vehicle. Loop closures from
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(a) Overview (b) Time elevation

Figure 3-12: A view of a pose graph from a ship hull inspection on the SS Curtiss.
The red lines are sequential constraints between poses and the green lines are sonar
based loop closures. The vertical axis is time, which better illustrates the loop
closures.

the sonar system are shown in green. As the vehicle moves back it can align to a

previous sonar frame. One of the major challenges when operating on clean ship

hulls was that there are few features. (Contrast this to the feature rich hull of

the USCGC Venturous shown in Figure 3-8(d)). Another problem was that many

of the structures were highly repetitive making it necessary to keep tight bounds

on the search region when matching frames. Addressing these issue are items for

future research. Improving the feature extraction making it more discriminative

is one direction. Also, matching over a larger region at a time as is done in the

multi session re-localization presented in Section 3.3 might address to problem with

repetitive structures. Finally, our collaborators on the HAUV project have presented

promising results using camera and proposed methods to estimate visual saliency in

camera frames [55].

Accuracy Evaluation

The accuracy of the imaging-sonar navigation was evaluated using a dataset collected

in the Charles River (see Figure 3-17). The vehicle was configured with the DVL

62



(a) Overview (b) Time elevation

Figure 3-13: A view of a pose graph from a ship hull inspection on USCGS Seneca.
The red lines are sequential constraints between poses and the green lines are sonar
based loop closures. The vertical axis is time, which better illustrates the loop
closures.

facing downwards and the vehicle moved horizontally at a fixed altitude. The esti-

mated state includes only horizontal position and heading. This is a simpler setup

than in the ship hull inspection case.

The dataset consisted of a 2 hour mission where the vehicle repeatedly surveyed

a 20×15 meter rectangular area. The vehicle was looking under the pier at the MIT

Sailing Pavilion and most of the loop closures occurred where the vehicle was close

to the pier. An overview of the smoothed trajectory compared to the dead reckoning

is given in Figure 3-14.

To evaluate the accuracy of the map estimate a selection of features in multiple

frames were manually marked. These features are shown as markers in the overview

image. To compare the estimated map to the DR position the features in each

frame were projected using each position estimate, then compared to the position of

the feature when it was first seen. As demonstrated in Figure 3-15 when using the

smoothed estimate the re-projection error of each feature is bounded over the 2 hour

mission time, while using the uncorrected navigation the error increases.

The HAUV must use a gyro for heading because it is designed to operate close to
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Figure 3-14: Overview of an inspection in the Charles river.
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(c) Object 3
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(d) Object 4

Figure 3-15: Showing the projected target location for a 2 hour mission
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Figure 3-16: Showing the heading drift over a 2 hour survey.

a ship hull which will interfere with a magnetic compass. This is a FOG so it is fairly

accurate though not accurate enough to provide absolute heading. Thus over time

the heading drifts as is shown in Figure 3-16. The heading drift is a large contributor

to the navigation error for the HAUV vehicle.

We have demonstrated the accuracy of the system operating in the Charles River

inspecting the river bed and pier structures. Further evaluation in the ship hull

environment, beyond the on-line experimental results mentioned earlier, is a subject

for future work. On the clean ship hull there is room for improvement in the feature

extraction and handling large repetitive structures on the ship hull.
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(a) MIT Sailing Pavilion (b) HAUV sitting idle and preparing to enter the
murky river

(c) Charles River mission control. Brendan and
Hordur monitoring the mission progress

(d) HAUV breaching the surface

Figure 3-17: Operations at the MIT Sailing Pavilion in the Charles River
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3.3 Multi-session Feature Based Navigation

In this section we will describe a system for multi-session feature based navigation

using a forward looking sonar. In seafloor surveying it is important to know the

vehicle location. In particular, knowing the position relative to previous missions

allows comparison of data between different surveys. It also allows for planing precise

missions to inspect particular features in the area of interest, this could include

portions of an oil-pipeline, target identification for mine countermeasures, etc.

In our work we build on methods previously developed in a project for underwater

mine neutralization [29–31]. The goal of that project was to have a low end vehicle to

use a forward looking sonar to home onto a target, attach to it, and finally neutralize

it. An overview of experiments and results from the project is provided in [24]. In

our work we are primarily interested in enabling navigation across multiple missions

by global re-localization, continuous extension of the map, and finally a reduction of

the map.

Next we will give the formulation used for the map estimation, then describe the

main components of the system: target tracking, global alignment, and map merging.

Finally we will provide results using data that was collected during experiments in

May 2011, which took place in the Gulf of Mexico near Panama City. The vehicle

used was a REMUS 100 vehicle equipped with a DVL and an RLG INS system.

Additionally, the system had a Blueview Proviewer 900kHz imaging sonar, a sidescan

sonar and a camera. Examples of data from these sensors is given in Figure 3-18.

3.3.1 Formulation

As in Section 3.2.1 the vehicle state is represented by the vector xi = [x y z φ θ ψ]T

where (x, y, z) are the position and (φ, θ, ψ) the orientation. We use the same right
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(a) Camera (b) Imaging Sonar (c) Sidescan Sonar

Figure 3-18: A comparison of a target seen from different sensors.

handed coordinate system with x-axis forward and y-axis to the right as before.

The map is represented as a factor graph G = (X,L, U, Z, f, h) where X = {xi}

are the poses, L = {lj} a set of points features, U = {ui} are controls, Z = {zi,j}

are the feature measurements. The features are represented in global 3D Cartesian

coordinates i.e. lj = [x y z]T .

The motion model is given by

xi =f(xi−1, ui−1) + wi wi ∼ N (0,Σi) (3.7)

with process noise wi and the sensor model is

zk = h(xi, lj) + vk vk ∼ N (0,Λk) (3.8)

for feature lj seen from pose xi and vk is the sensor noise. The difference here from

the pose graph formulation mentioned earlier are the pose-to-feature measurements,

rather than pose-to-pose measurements. To evaluate the measurement function h

the feature lj is first projected into the vehicle frame at time i using the pose xi then

into the sonar frame. Then using Equation 3.1 the spherical coordinates [r θ φ]T
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are computed. The sonar measures [r θ] but because the beam width of the sonar

is limited we further constrain the elevation φ using a cubic normal parametrization

as proposed in [29].

The estimate of the map is given by the ML solution for X and L given all the

measurements Z, and as before computed by solving the associated nonlinear least

squares problem.

For the multi-session operations the system maintains three estimates of the

environment: 1) the prior map that was initially loaded, 2) the current estimate,

3) the merged map from the best global alignment. Each of the maps is a factor

graph as described above. If the feature assignments from the global alignment

system change, the merged map is discarded and a new map is formed with the new

assignments.

3.3.2 Feature Tracking and Initialization

In this section we describe how the initial detections from the feature detector are

tracked and initialized before they are passed on to the mapping system. The features

are detected in the sonar image using the algorithm developed by Folkesson et al. [31]

and are provided with the dataset that was used in this work. The detections find

bright targets in the sonar image, and the measurement is given in range and bearing

relative to the sonar. Because of noise in the sonar image the detector can return

spurious measurements so we need to track and associate detections across multiple

sonar frames before they can be passed to the mapping system.

The approach we take here is to first define a collection of feature tracks. Each

feature track maintains a set of associated measurements, 3D positions, and uncer-

tainty in the current vehicle frame. The track is then updated using an unscented
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Kalman filter (UKF) [49].

First, each feature track is propagated into the current vehicle frame. Next,

a predicted measurement ẑ = [r θ]T and its associated covariance Λ is computed

for each track. This is done using the unscented transform (UT) [49]. Then each

measurement is associated to its nearest neighbor determined by the Mahalanobis

distance ||zk − ẑ||Λ of the innovation. The match is only accepted if the distance is

within a given threshold. Here we set the threshold to reject measurements outside

the 99th percentile.

Each active matched track is then updated using the UKF update rules. If a

track has received more then a certain number of measurements it is sent to the

mapping system with all the measurements included to date. In subsequent steps

new measurements for that track are passed directly to the mapping system. Tracks

that fall behind the vehicle are removed from the tracker, in order to limit the number

of active tracks at any given time. Next we will look at how the current map can be

aligned and merged with the prior map.

3.3.3 Global Alignment

Periodically all possible assignments between the prior map and the current map are

tested. The best possible map is then reported to the mapping system which can

then use those feature assignments to merge the prior and current map estimates.

The best possible match is chosen as the match that has the highest number of

matched features.

To align the current mission to the prior mission we used the fact the vehicle

navigation is accurate locally and provides accurate heading. In that case a single

putative match is sufficient to compute a proposal for the alignment. Thus, instead of
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using random sampling, as in RANSAC [27], to find a match, we can quite efficiently

consider all correspondences.

To align two maps we consider the feature locations in each map L = [l0 l1 . . . lN ]

and L′ = [l′0 l
′
1 . . . l′M ]. We want to find a transformation ∆ that maximizes the

number of matching features. We start by considering every pair (li, lj) as an initial

proposed alignment model. The initial proposal is then ∆0 = li − l′j. A set of

putative matches is found by transforming all the points in L′ by ∆0. A match is

found by associating each point to its nearest neighbor. If the distance is within a

given threshold it is accepted as a match.

If we assume that n landmarks are matched and they have been ordered such

that lk and l′k have been matched together, where k = 1 . . . n. Then we like to find

a transformation ∆∗ between the landmarks such that the distance between the two

sets is minimized, and is given by

∆∗ = argmin
∆

∑
||lk − (l′k + ∆)||2 (3.9)

=
1

n

n∑
k=1

(lk − l′k) (3.10)

Finally, the estimated alignment with the highest number of matched features

and the lowest error is sent back to the mapping system. The mapping system then

uses the transformation and the correspondences to merge the maps.

3.3.4 Map Merging and Reduction

After the alignment the correspondences between the prior map and the current map

are used to create a combined map of the two. This combined map is eventually saved

at the end of a mission to be used for subsequent runs. That way the map can be
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gradually extended over multiple missions. We compared two different methods of

combining the map. The first approach is to simply incorporate all the information

from both maps, while the second tries to only incorporate information to add newly

seen landmarks into the combined map.

In the full approach we start by creating a copy of the prior map. Then all the

features from the current map that were not matched are added to the new map.

In the new map their position is initialized using the computed alignment. Next

all the poses from the current map are added to the combined map, and the poses

are initialized using the estimated alignment. Finally all the measurements from the

current map are copied over, and the measurements that measure matched features

are updated accordingly.

The reduced approach starts in the same way by copying the prior map and

then copying all the new features. Not eliminating any new features is one of the

requirements for the reduction. The graph is reduced by incorporating information

that is sufficient to include the new features and also constrain the trajectory to the

existing map. First we examine all the measurements and mark the poses if they

connect to a new feature or an existing feature. Then we go sequentially through all

the poses. If a new feature is measured from a pose we require that n nearby poses

measuring existing features are included in the graph. In our experiments we used

n = 20 which proved sufficient to adequately constrain the newly added section. The

parts that are removed are chains of poses that see only existing features.

This approach reduces the map by avoiding adding new information to parts of

the map that have already been included. In Chapter 5 we will look at a different

approach that reduces the graph yet still continuously integrates new information.
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3.3.5 Results for Multi-session Feature Based Navigation

The feature based navigation system was developed and evaluated using data col-

lected during experiments in Panama City, Florida in May 2011. The vehicle used

was a REMUS 100 AUV equipped with a Blueview Proviewer 900kHz sonar. The

purpose of the experiments was to demonstrate target acquisition given a prior map.

The missions were repeated traversals through the same area allowing us to use the

data to test our multi-session algorithm. An example of the survey area is illustrated

in Figure 3-20. The top figure is a sidescan sonar image of a part of the area and

the bottom figure shows the vehicle trajectory in that same area. Green points are

tracked features. Red are features that have not yet been accepted. Gray points

indicate detections not upgraded to a feature, clearly showing how noisy the initial

detections are.

The vehicle also had a GoPro camera mounted under the vehicle to document

captures. We calibrated the camera and synchronized it with the vehicle time. This

allowed us to project tracked features onto the camera as shown in Figure 3-19. It

is clear that the detections group around a target lying on the seabed.

Alignment to prior mission

First we look at the benefits of re-aligning the vehicle location to a map from a

previous mission. Figure 3-21 shows an example of two missions. At the top is the

initial mission. The grid size is 20m so the whole trajectory is around 160 meters

across. The green line shows some of the feature measurements, the red triangles

are features, and the vehicle trajectory is shown in red. Then a second mission is

run (shown in the middle figure). The green points are features from the second

missions, and green lines show the matches given by the alignment algorithm. The
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Figure 3-19: Fused view of sonar and camera.

error between these comes from both initial GPS error and then navigation drift as

the vehicle approaches the field. Finally on the bottom the green trajectory is now

the second mission aligned to the first. Now the features between the two missions

line up.

Map merging and reduction

To compare the full and reduced map merge algorithms we selected 6 missions (shown

in Figure 3-22) from two separate days. The green points are the feature estimates

in the final combined map. The triangles are feature estimates from the individual

missions. Each of the trajectories are shown in different colors and we see that each

missions aligns well with the combined map. For the evaluation we considered how

much the graph was reduced, the difference between the poses in each estimate, and
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Figure 3-20: This figure shows the result of the estimated trajectory from the Panama
City 2011 experiments. The boxes are objects identified from a previous mission.
The green dots show the estimated position of features automatically detected in the
forward looking sonar. The red points are features that did not get enough support.
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(a) Initial mission

(b) Second mission

(c) Second mission after alignment

Figure 3-21: At the top is the initial mission. In the middle is a second mission where
the missions have not been aligned. At the bottom is the result after alignment.
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finally the timing information for individual components. The total mission time

was around 19 minute or 2-4 minutes per mission.

Figure 3-22: An overview of the 6 missions used for the evaluation.

The combined map constructed using the full merge includes in total 1520 poses

and 30 features. For the reduced merge the final map consisted of 749 nodes and the

same number of features. Figure 3-23 shows how the size of the map evolved over

all the missions. The sharp edges in the graph is when the maps are first combined.

The combined map is only constructed if the alignment procedure finds at least 4

matches. The size of the map was recorded each time the merge procedure was run.

As expected the number of features quickly evens out because most of the mission

time is spent in the same area. We also see that the growth of the reduced map

follows the addition of new features while the full map continuously grows.

To evaluate the accuracy we looked at the average distance between poses in the

two final combined maps. The mean distance was 0.36m with standard deviation

0.4m so some accuracy is lost with the reduction. The resulting trajectories are

shown in Figure 3-24. Possibly this can be improved further by including more

measurements between the missions, or requiring some minimal number of features

to be matched between the different maps. In Chapter 5 we consider a different

reduction approach that is applicable to pose graphs.
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Figure 3-24: Comparison of the trajectories generated using the full and the reduced
approach. The average distance between poses in the two trajectories is 0.36m with
standard deviation of 0.41m.
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The time for the map alignment, map merge, and map update was measured while

constructing the maps. For the timing experiments a Intel(R) Core(TM) i7-2920XM

CPU @ 2.50GHz machine was used. The computation time for the duration of the

missions is shown in Figure 3-25. These numbers are single point measurements for

a single execution. The map update takes most of the time. The optimization was

run in batch mode because the alignment can change the feature correspondences

and the resulting merged map. An interesting direction for future work is to consider

how to incrementally update a combined map as the correspondences change, and

when variables are removed or added.

In the final stage the map merge takes around 20ms for the reduced map and

33ms for the full map. The map alignment is very similar for both maps, because

the complexity is governed by the number of features and the number of poses. For

the small map size considered here the alignment does not take much time. The

alignment algorithm considers O(MN) pairs, assuming the maps have M and N

features, so as the maps gets larger the computational cost might become significant.

One approach would be to consider only a fixed number of features in the current

map, e.g. only match a local neighborhood around the current position in relation

to the prior map.
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Figure 3-25: Timing comparison of the full and reduced map estimates. At the top
is the merge of two maps. In the middle is the alignment algorithm. The bottom
plot shows the time for update step taken by the nonlinear solver.
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Chapter 4

Real-time Visual SLAM

Cameras are convenient sensors to use for SLAM. They are small and inexpensive

compared to other sensors, e.g. lasers. In addition they give rich information about

the environment which can be used to identify specific places and recognize objects,

in addition to estimating the sequential motion of the camera. In this chapter we

will describe in detail a SLAM system that uses vision as its primary input and

map representation. An architecture overview of the system is given in Figure 4-

1. The main components are: visual odometry, loop proposal, loop closure, map

management, and map estimation. These components will be described in detail in

the following sections.

The map representation is a set of keyframes, their poses and features associated

with them. The primary motion estimate is visual odometry which is computed by

matching consecutive frames. A global loop proposal and frame alignment algorithms

are used to correct errors accumulated from the odometry measurements. The SLAM

system achieves real-time performance and can use either stereo or RGB-D cameras.

In addition to using the camera for motion estimation an IMU and wheel odometry
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are used. This improves the overall robustness of the system because there are many

situations that will cause the vision system to fail. Finally, the vertical acceleration

measured by the IMU is used to track elevator motion, enabling operations in multi

story buildings.

4.1 Map Representation

The map is represented as a collection of camera poses and features from the camera

frames associated to each pose. Combined, the poses and the features can be used

to form a global map that can then be used for path planning and navigation. The

location of each feature in the image and a descriptor is stored in the map. The

descriptor is later used for both discovering and verifying loop closures, as described

in Section 4.6. Also, to efficiently search for similar places an inverted index of a

bag of visual words is maintained. In addition to the camera poses a collection

of constraints on the poses are also kept with the map. Together the poses and

constraints form a standard pose graph formulation [82] of the map.

The poses are 3D poses represented by x = [x y z φ θ ψ] which are the Euclidean

position of the pose and the orientation using Euler angles representing roll, pitch

and yaw. The primary constraints are 6DoF rigid body constraints between a pair

of poses which can be derived from wheel odometry, visual odometry, or alignment

derived from visual loop closures. When an IMU is available an absolute constraint

on the vertical component of the pose is added, which is based on measurements

from the acceleration sensors.

As described in Section 2.4.2, because the measurements are noisy we model

them as probability distributions. The Maximum Likelihood (ML) estimate is then

computed and used as the current estimate of the map. Let X = {xi|xi ∈ R6, i =
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Figure 4-1: Architecture for the visual SLAM system. On the left are the sensor
inputs and on the right are the clients that consume information from the visual
SLAM system. The FOVIS library is used for visual odometry [44] and geometric
verification of loop closures. Dynamic Bag of Words [84] has been used for loop pro-
posals. The OpenCV library is used for computing feature descriptors and matching.
The map estimation uses the iSAM library.
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1...N} be a set of N poses and F = {fk(zk, ik, jk, fk)|k = 1...M} be a set of M factors

corresponding to constraints between poses. Then the ML estimate X∗ is given by

X∗ = argmax
X

F (X) = argmax
X

M∏
k=1

fk(Xk, xk) (4.1)

where Xk is the subset of variables connecting to factor fk.

The measurements zk are random variables s.t. fk(xik ,xjk) = zk + wk and wk

is the measurement noise. If we model wk as being a zero mean Gaussian random

variable then the maximum likelihood can be computed by solving a nonlinear least

square problem. For robust cost functions a weighted least squares method can be

used [40].

4.2 Alignment

When using only vision the constraints zk will be derived by aligning two nearby

frames. Lets assume we have a set of point measurements ai and bi that measure

point pi in frame A and B respectively. We like to estimate the transformation T

between the two frames. The transformation T will take a point in frame B and

transform it to frame A

pa
i = Tpb

i (4.2)

and T = [R|t] where R is a rotation matrix and the vector t = [xyz]T is the trans-

lation. We parametrize the transformation with x = [xyzφθψ] where x, y, z is the

translation and φ, θ, ψ are Euler angles corresponding to roll, pitch and yaw respec-
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tively.

To find the alignment x we find a transformation that minimizes the Euclidean

distance between the points

x̂ = argmax
X

∑
i

||pa
i − Tpb

i ||2 (4.3)

and assuming additive, zero-mean Gaussian noise, then x̂ is the ML estimator. Be-

cause the 3D position is computed by triangulating the points from each stereo

camera a better estimate is achieved by minimizing the reprojection error [79].

x̂ = argmax
X

∑
i

||za
i − f(KT (x)pb

i)||2 + ||zb
i − f(KT (x)−1pa

i )||2 (4.4)

where K is the camera matrix

K =


fx 0 cx

0 fy cy

0 0 1

 (4.5)

and f : R3 → R2 projects a 3D point onto the image plane.

f(p) =

x
z

y
z

 (4.6)

This is the approach used to estimate both sequential motion and loop closure

constraints in sections to follow.
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4.3 Visual Odometry

The incremental motion is estimated by matching sequential video frames and com-

puting the motion between them. This is referred to as visual odometry (VO) [79].

There have been many implementations of VO in recent years. We use a publicly

available implementation called Fast Odometry for VISion (FOVIS) [44]. It supports

both RGB-D and stereo cameras. In the reminder of the section we will give a de-

scription of this particular algorithm and how we combined it with the overall vision

SLAM system.

The main steps for a VO algorithm are:

1. Detect keypoints

2. Extract features

3. Match features to previous frame

4. Compute motion between frames

Following is a description of how FOVIS implements these steps. The input to

the motion estimation algorithm, when using a stereo camera, are the gray colored

frames for the left and right camera; when using the RGB-D camera the input are

a gray image and a depth image. The output from the algorithm is the motion

estimate from the previous keyframe to the frame passed in. Possibly the keyframe

was changed to the most recent frame passed in. In addition it is possible to retrieve

a covariance estimate and the detected features.
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Parameter Descriptions Typical
FAST threshold Determines which keypoints are used 10
# inliers for keyframe change A keyframe is changed if the number of inliers drops

below this threshold
100

# inliers for motion estimate If the number of inliers is below this threshold then the
motion estimation is not computed and it is assumed
the VO has failed

15

Minimum reprojection error After the optimization all points that are within this
threshold are determined as inliers

1.0

Grid size Used to ensure an even distribution of features across
the image. A fixed number of features with highest
FAST score are selected from each grid cell

80x80

Clique inlier threshold The difference of the distance between a pair of features
so they are determined as a valid pair

0.15

Table 4.1: Parameters for the visual odometry module.

Parameters

There are many parameters that will affect the performance of the visual odometry.

A description of the parameters and typical settings is provided in the table below.

Additionally there are specific features to choose from, e.g. the grid can be en-

abled or disabled, the FAST threshold can be fixed or adaptive, sub-pixel refinement

can be enabled. The parameters given in Table 4.1 are those that worked well for our

scenario. We used a fixed FAST threshold instead of using the adaptive threshold

that is supported, because in some cases the threshold would get too low, allowing

many spurious features to be selected, and decreasing the overall accuracy. Having

a minimum setting on the adaptive threshold might minimize that problem.

Detect Keypoints

First a Gaussian pyramid is constructed from the input image. A FAST [90] detector

is used to find keypoints on each level of the image pyramid. The FAST detector

works by finding a segment of points on a circle around the pixel being tested that
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have intensity that is lower or higher then a given threshold. If the length of this

segment is greater then 9 pixels the pixel is classified as a keypoint. For increased

stability, maximal suppression is also performed in the neighborhood of the detected

keypoint. This algorithm is extremely fast but it is sensitive to noise in the image.

Feature Extraction and Matching

After the keypoints have been detected each one is matched to the neighboring key-

point that is most similar; the neighborhood is defined as all keypoints within a fixed

radius in the image. The image patch around the keypoint is used as the descriptor

and the similarity is determined by the sum of absolute differences (SAD). A match

is accepted if the match from reference frame to target frame, and target frame to

reference frame are mutually consistent. After the match, a sub-pixel refinement is

performed on the target keypoint, by aligning the gray image patches. The gray im-

age patches are aligned by minimizing the sum-of-square errors between the patches.

An example of frame-to-frame feature tracking is given in Figure 4-2(a).

Compute Motion Between Frames

The cameras supported by FOVIS are either RGB-D or stereo cameras, and the only

keypoints considered are keypoints that have depth. Having the depth information

is particularly useful for both determining inliers and initializing the motion. To

determine the inliers the distance between a pair of keypoints in the reference frame

is compared to the distance of the corresponding keypoints in the target frame. The

transformation being sought is a rigid body transformation which preserves distances.

Thus if the distances are within a pre-determined threshold then these correspon-

dences are marked consistent. This forms a graph over keypoint correspondences.
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Now a maximal clique is determined in the graph. This clique forms the inliers set.

Given a collection of 3D points and consistent correspondences it is possible to

use direct methods like Horn’s absolute orientation algorithm to compute the initial

motion — as is done in this work.

This initial estimate is further refined by minimizing the bi-directional reprojec-

tion error. This is done by solving a nonlinear least squares problem using Leven-

bergMarquardt (LM). After the optimization the re-projection error is computed for

each point. If the re-projection error exceeds a given threshold the point is removed

from the inlier set. After the outlier points have been removed the optimization is

run once more — this gives the final estimate. The covariance is reported as the

approximated Hessian JTJ where J is the Jacobian of the cost function.

4.4 Map Management

The map management module is responsible for collecting and combining various

sensor inputs to manage the map and report the vehicle state information relative

to the map. To construct the map it ties together several modules, including visual

odometry, appearance based index, frame alignment and map estimation.

The primary inputs are frame matches from the visual odometry module. Each

frame match contains the estimated motion between two frames which consists of

the motion estimate and the uncertainty of the estimate. A status field indicates if

the match succeeded or if not why it failed. If a match failed, the map module can

use other estimates if available — e.g. wheel odometry or a motion model. The key

steps in the mapping algorithms are:

• New match
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(a) Feature tracking (b) An image from the stereo camera

(c) Loop closure

(d) Vision based pose graph with multiple passes

Figure 4-2: Examples of feature tracking for visual odometry and geometric loop
closure verification.
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• Check loop closure

• Add pose

• Chain measurements

• Incorporate IMU

The new matches come from the visual odometry and provide the transformation

from the previous frame along with an uncertainty measure. The VO system issues

these matches each time a keyframe is changed. Initially when the mapping system

receives a new match it adds it to the transformation that links to the previous

pose added to the map. If the camera moves a specific distance then a new node is

added to the map and this chained estimate is used as a constraint between the two

poses: the last one and the newly added pose. When the IMU information is used an

additional constraint is added for the vertical component of the pose, i.e. it constrains

the roll and pitch angles. In addition to tracking the sequential motion the system

searches for potential loop closure to correct the drift of the estimate acquired by

chaining the sequential motion. A high level description of the algorithm is given in

Algorithm 1.

For any incoming frame a feature descriptor is computed for each keypoint in the

new frame. The feature descriptors are maintained for later use in the appearance-

based loop proposal and frame registration modules. Several different descriptor

types are supported by our implementation including BRIEF, Calonder and SURF.

In each case we utilize OpenCV to compute these descriptors.

Another responsibility of the map management module is to determine which

poses to consider for loop closures. This includes local and global loop closures and

is described in sections 4.5 and 4.6 respectively. The map module partitions the
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Algorithm 1: Pose graph mapping algorithm

Data: map is the map estimate
Input: matches a queue for incoming matches

1 foreach match ∈ matches do
2 if match failed then
3 use wheel odometry

4 extract descriptor from current frame
5 if distance from previous > threshold then
6 add a new pose
7 add transformation from previous pose
8 check for a global loop closure
9 if found then

10 add transformation to new pose

11 else
12 update transformation to last pose added

13 update map

space using a regular grid in 3 dimensions (x, y, and heading) and is referred to as a

place map. The place map is used for tracking and later for the pose graph reduction

presented in Chapter 5. This map is updated as new information is acquired and

the pose graph changes. This partitioning can also be extended to take into account

the elevation of the sensor and consider the view volume of each frame.

4.4.1 Visual SLAM Parameters

There are several parameters that need to be set for the visual SLAM system. Below

we provide a description of these parameters.
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Parameter Typical value

Use WO true

# inliers for WO fallback 15

Loop proposal threshold 0.2

Number of loop closures checked 10

# inliers to accept a loop closure 40

4.5 Active Node Registration

As the camera is moved around the environment it is possible to use the current

position estimate to predict which frames overlap. If there are any nearby frames we

try to align the current view to those frames. This is done by first finding a collection

of putative matches by matching each keypoint in one frame to the keypoint that

has the closest feature descriptor in the other frame. The matching is achieved

using brute-force matching between the features in the two frames. Different types

of feature descriptors can be used for the matching, including: BRIEF, SURF and

Colander. The BRIEF descriptor is particularly useful because it is efficient both to

compute and compare.

The initial putative matches will contain some incorrect correspondences. As with

the visual odometry, we construct a consistency graph by considering the distance

between a pair of points in the two frames. The inlier set is then determined by

finding the maximal clique in the graph using the clique based inlier algorithm from

FOVIS.

The initial estimate is computed by directly minimizing the squared error using

Horn’s algorithm (or Umeyama). Then the estimate is refined by minimizing the

bi-directional reprojection error of the inlier points in each frame. This estimate is

obtained using LM and a robust cost function. Points that have high reprojection
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error are removed from the inlier set. The Hessian of the estimate is then used to

estimate the covariance of the alignment. If a minimum number of inliers is found

the constraint is added to the pose graph.

4.6 Global Node Registration

If registration to the active node fails, a global loop closure algorithm (across the

entire set of poses) is used instead. A bag of visual words is used to describe each

frame and an inverted index is used to efficiently search for similar frames. See [84]

for more detail on this approach. Each match is scored and if the score is below a

given threshold the frame is proposed as a possible loop closure. The loop proposal

is then verified with a geometric consistency check, by registering the two frames,

using the method described above.

When using SURF features the features are quantized using K-means. When

binary descriptors such as BRIEF are used, a K-median is used instead. For the

binary descriptors we used a library called “bbow” for the loop proposals 1. Because

we support multiple loop proposal modules we standardized the scoring to be in the

range 0 to 1, where 1 would mean a perfect match. To evaluate the loop proposal

method we ran the system with a low threshold on the proposal score, relying on

the geometric consistency check to remove incorrect matches. We then looked at the

distribution of the correct and incorrect matches as a function of the score. As seen

in Figure 4-3 the loop proposal mechanism is not perfect, i.e. it does not separate

the failed matches from the correct ones completely. So there is a trade off between

choosing how many loop proposals to miss versus how much time to spend on the

1The library used for the binary descriptors is called Binary Bag-Of-Word (bbow) developed by
Daniel Maturana — http://dimatura.net/proj_bbow.html
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geometric verification.
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Figure 4-3: The distribution of the failed and successful loop proposals as a function
of the score from the system.

4.7 Vertical Motion: Elevators

Many buildings contain multiple floors and it is reasonable to expect that the robot

might be able to go from one floor to another, for example using an elevator. This

type of motion is not observable by the vision system or the wheel odometry. Also

it is not sufficient to rely on intent only, because the robot does not have full control

over which floors the elevator will stop at. One could imagine using the loop proposal

mechanism, but that might require the robot to exit the elevator.

One possibility is to use a barometer to track vertical motion. Instead, in this

work we use the accelerometer sensor that is present in many robots, often as part

of an IMU. Integrating the vertical accelerometer information over time provides us

with the vertical displacement of the robot. The method is accurate because the
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Figure 4-4: Top: Using the Z-component of the PR2’s accelerometer, the start and
end of elevator transitions can be detected using a matched filter. The figure illus-
trates 5 different elevator rides - showing that the acceleration is clearly repeated.
Middle: By integrating this signal the elevation of each floor can be estimated. Bot-
tom: During our 10 floor experiment (beginning and ending on Floor 3), the floor
assignment can be determined using a simple lookup table. See Section 4.7 for more
details.
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Algorithm 2: Floor tracker

Data: floors
Input: a - acceleration, q - orientation

1 zf ←− filter(z)
2 if zf < threshold then
3 motion up

4 else if zf > threshold then
5 motion down

6 else
7 motion stop

8 update bias
9 if state == Stopped then

10 else if state == Decelerating then
11 if motion == Stopped then
12 state←− Stopped
13 update floor

14 else if state == Running then

15 position←− position+ velocity ∗ dt
16 velocity ←− velocity + a ∗ dt
17 if not stopped then
18 time tracking ←− time tracking + dt
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Figure 4-5: Top: The top shows estimated elevator height. Middle: The filtered
acceleration with start and stop events marked with the blue line. Bottom: the raw
acceleration input. See Section 4.7 for more details.

velocity at the start and end of the elevator transit are known to be zero. Results

from our floor tracker are shown in Figures 4-4 and 4-5.

To assign these vertical displacements to floor numbers, a table of floor heights

is maintained. Each time a transition is detected the table is searched for the closest

floor. If the distance to that floor is within a given threshold it is accepted as the

current floor, otherwise a new floor is added to the table. This could be further

improved by treating each elevator ride as a measurement of the floor height and

then use multiple rides to estimate all the floor heights.

Knowing the floor the robot is on is also useful for limiting loop closure search.

Only matching to nodes on a single floor avoids wrong loop closures that can occur

when different floors appear similar.
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4.8 Results

To evaluate the visual SLAM system we collected several datasets from the 2nd floor

of the MIT Stata Center. A PR2 robot was manually driven around the floor while

the sensor data was recorded. The robot was equipped with a stereo camera, a

Kinect, Microstrain IMU and Hokuyo laser range finder. Then laser scans from the

dataset were manually aligned to floor plans to generate ground truth poses for the

dataset. The error metric used was the absolute distance between the estimated pose

and the groundtruth pose. In addition to the accuracy evaluation we also considered

the performance of the different modules in the system.

4.8.1 Visual Odometry

First we determine the accuracy of the VO and compare it to the wheel odometry.

The accuracy was evaluated by having the visual SLAM run using only dead reck-

oning. Then the trajectories were fixed at the first pose of the groundtruth. As

shown in Figure 4-6 the position estimates from the integrated VO and wheel odom-

etry (WO) drift as the vehicle moves from its starting position. On this sequence

the VO performs better, even though alignment failed several locations. Figure 4-7

shows that both the position and the heading accuracy of the VO outperforms the

wheel odometry. The error in heading is the largest contributor to the absolute po-

sition error when using the wheel odometry. At some point the wheels might have

slipped giving an incorrect measurement. These results suggest that using the VO

as the primary motion input is the best choice. In the next section we will look at

how these choices affect accuracy when running the full visual SLAM system.
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Figure 4-6: The dead reckoning trajectories for visual odometry and wheel odometry
are shown in comparison to the ground truth trajectory.
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Figure 4-7: Comparing drift in visual odometry and wheel odometry.
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4.8.2 Accuracy of the Visual SLAM System

In this section the accuracy of the visual SLAM system is evaluated. The effects of

solely using vision are compared to the use of wheel odometry for error recovery and

using an IMU to bound the drift of the roll and pitch of the camera. As shown in

Table 4.2 combining all the sensors improves the performance of the system. Using

the VO as the sequential motion estimate performs better then using the WO as was

expected from the results in the previous section. The different trajectories estimated

are shown in Figure 4-8.

Incorporating the IMU has a significant effect on bounding the drift along the

vertical axis. When using only VO, the height error is approximately 1m towards

the edges of the map while it is closer to 30cm when the IMU information is used.

This is shown in Figure 4-9 where the poses are plotted along the z and x axis of

the map.

Another thing to look at are the error distributions which are shown in Figure

4-10. The errors are computed as the absolute distance to the groundtruth pose.

There are some outliers in the distribution. These tend to be towards edges of the

maps where they are not as well constrained as the well connected parts in the center

of the maps.

Median (m) Mean (m) StdDev (m)
Vision only 0.74 0.73 0.55
WO + IMU + Vision for loop closure 0.71 0.79 0.52
Vision + IMU + WO 0.59 0.58 0.38

Table 4.2: Accuracy for different variants of the SLAM algorithm. This is evaluated
on the Stata 2nd 01-25-12-1 dataset using the stereo cameras.

Another run from the Stata Center 2nd floor was evaluated, and the mean error

was 0.49m, the results are shown in Table 4.3.
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sensors.
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Median (m) Mean (m) StdDev (m) Duration (min)
Vision + IMU + WO 0.40 0.49 0.28 36

Table 4.3: Accuracy for Visual SLAM using a stereo camera. This is evaluated on
the Stata 2nd floor 2012 01-18-09 dataset.
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Figure 4-10: Shows the error distribution for a pose graph when using different
combinations of sensors. The top left is for VO only, top right is WO + IMU, and
bottom is VO + IMU + WO for recovery in case the VO fails.
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Figure 4-11: Map created using a Kinect camera. The map is aligned using the best
similarity transform that fits the pose graph to the ground truth.

For a qualitative comparison we processed a sequence from the Kinect camera.

Then each point cloud associated with the poses in the map was reprojected to create

a colored 3D map. The results are shown in Figure 4-11. It was aligned to the floor

plan by finding a transformation that minimized the distance of the poses in the

map and the position provided by the groundtruth results. The width of the floor is

around 90m. Globally the map aligns fairly well with the building floorplan.

4.8.3 Performance of the System

In addition to evaluating the accuracy of the system, we also looked into the per-

formance of the system, which is important for on-line applications. To stress the

system we used a dataset that consists of 4 hours of stereo data from the PR2.

The timing results are shown in Figure 4-12. The vertical axis is the percentage of

computation time used. As more and more nodes are added to the map the CPU
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eventually saturates and most of the time is spent on optimizing the graph. The

appearance based search is another component where the computational complexity

grows as the number of nodes increases.

This illustrates the main problem with the pose graph formulation. When oper-

ating for long duration the pose graph grows without bounds, even though the size of

the environment is fixed. So it is necessary to reduce the graph in some way to bound

the computational complexity. In the next chapter we will address this problem and

propose a reduced pose graph algorithm that can efficiently process this sequence

and generate a map of comparable accuracy.
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Figure 4-12: Timing results when using a full pose graph for a 4 hour sequence.
The top plot shows the time for each component of the SLAM system as a function
of exploration time. The middle plot shows the time for those components that have
growing time complexity. The bottom plot shows the number of nodes in the graph,
both for the pose graph and the reduced pose graph.
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Chapter 5

Reduced Pose Graph for

Temporally Scalable Visual SLAM

In the previous chapter a pose graph based visual SLAM system was presented. One

of the limitations encountered with that algorithm is that as the robot continuously

navigates through the environment more poses are added and the graph grows larger

with time. As the graph grows larger it will eventually affect the performance of

the system as more and more of the time is spent updating the map estimate and

eventually running out of memory as more poses are stored. In this chapter we

present an approach that constructs and maintains a map such that the complexity

is significantly reduced compared to the full pose graph — we call this method the

reduced pose graph (RPG). The core concept, as demonstrated in Figure 5-1, is to

construct a minimal representation of the environment yet continually integrate new

information for improved robustness and accuracy. We will show how the complexity

is drastically reduced for long term operations and how the accuracy improves over

time. The evaluation is performed using a multi-floor long-term dataset collected
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Place 1 Place 2 Place 3 Place 4

Area cover x1 x2 x3 x4

x8 x7 x6 x5

x9 x10 x11 x12

(a) Traditional pose graph

Place 1 Place 2 Place 3 Place 4

Area cover x1 x2 x3 x4

(b) Our reduced pose graph

Figure 5-1: Comparing our reduced pose graph with the full pose graph on a small
example. The same environment is traversed three times. The area is covered by
the first four poses. The reduced pose graph reuses these poses and transforms new
constraints into constraints between the existing poses.

with the PR2 robot.

5.1 Introduction

The motivation for the reduced pose graph is to retain a sufficient amount of poses

for representing the explored area. The concept of pose graph reduction to achieve

temporal scalability is intuitively appealing, and indeed has been proposed in the

previous literature in several contexts [36, 106, 107]. Pose graph reduction is related

to the use of keyframes in PTAM [57], but the use of keyframes alone presents

several shortcomings which we seek to avoid in our approach. In particular, using

new information only to track the robot/camera pose results in loss of information
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vs. our approach which continues to make use of new measurement information to

improve the map over time.

5.2 Graph Reduction

As defined in Chapter 2 a pose graph consists of N pose nodes X = {xi}Ni=1 and M

constraints Z = {zk}Mk=1. The main problem with the standard pose graph represen-

tation is that the state space continuously grows as more poses are added.

One approach to reducing the graph is to marginalize out some of the nodes

to reduce the state. We formulate the problem with the joint probability density

over the poses p(X,Z). Now let xr ∈ X be a node that should be removed and

X = {X0 XN xr} where XN are variables that connect to the same factors as xr

p(X0, Xn, Z) =

∫
xr

p(X0, XN , xr, Z)dxr (5.1)

=

∫
xr

p(X0, Z|XN)p(xr, Z|XN)p(XN)dxr (5.2)

= p(X0, Z|XN)

∫
xr

p(xr, Z|XN)p(XN)dxr (5.3)

= p(X0, Z|XN)

∫
xr

p(xr, XN , Z)dxr (5.4)

and by linearizing around the current mean making an assumption of Gaussian errors

then p(xr, XN , Z) is a Gaussian and xr can be marginalized out. This causes all the

variables XN to become connected so the graph loses sparsity.

Kretzschmar et al. [63] address this by approximating the marginal distribution

with another distribution that factorizes into p(xi|xj) terms, and then uses Chow-

Liu algorithm to find such a distribution that minimizes the KullbackLeibler (KL)
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divergence between the two.

Another approach is taken by Eade et al. [17] where the marginal distribution

is approximated by using the existing measurements to construct new connections

between all the nodes that are neighbors to the node to be removed. Instead of

reducing the marginal distribution during construction, edge pruning is used. When

the degree of a node exceeds a threshold some of the edges are removed to bring the

degree of the node below the set threshold. The edge with the least residual error is

removed given that it does not disconnect the graph. That is ensured by checking

the distance between the nodes on either side of an edge. If the distance is greater

then a given threshold the edge is not removed. In addition, if there is already an

edge between two nodes then those edges are combined.

In contrast to the methods above, our approach discards sequential constraints

to avoid the marginalization causing increased density of the graph. Additionally,

this is an efficient approach that does not require modification of the existing graph.

This algorithm is described in detail in following section.

5.3 Reduced Pose Graph

In this section we describe the reduced pose graph algorithm. In Figure 5-2 we

illustrate the reduction technique by comparing the construction of a full pose graph

and a reduced pose graph in the top and bottom figure respectively. The blue dart

indicates the current position of the robot. In step (1) a single loop closure to the

map has been acquired – as indicated by the blue edge. In step (2) a node is added

to the graph so the loop closure can be used and a loop closure to xj is detected. In

step (3) a node has been added so the last loop closure can be incorporated into the

graph. No loop closure is considered at the current pose because the robot has not
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moved far enough from the previous place. Finally in step (4) the robot has traveled

enough distance that a new pose is added and the whole process is repeated.

In contrast the reduced pose graph algorithm will estimate the transformation

from pose xi to xj. So in step (2) the transformation to xi is updated instead of

adding a new node to graph. In step (3) a complete chain from xi to xj (shown

in green) has been formed and can now be added as a constraint to the graph.

Furthermore the robot continuously tracks its position relative to the active node xj.

Then in step (4) the process is repeated as other places are visited.

The reduced pose graph consists of N pose nodes X = {xi}Ni=1 and M constraints

Z = {zk}Mk=1. A pose node contains the actual pose as well as the sensor measure-

ments required to construct a map and to recognize when the pose is revisited. A

constraint zk measures the spatial relationship between two poses ik and jk. Because

the measurements are noisy we consider the probability distribution p(X,Z), in par-

ticular we are interested in the maximum likelihood solution of p(X|Z) were X are

our parameters of interest. By design, the joint distribution factorizes as follows

p(X,Z) =
M∏
k=1

p(zk|Xk)
N∏
i=1

p(xi), (5.5)

where Xk is some subset of X. Then as mentioned in Section 2.4.2 we can compute

the maximum likelihood estimator X∗ by

X∗ = argmin
X

∑
k

Ck (f(xik , xjk)− zk) , (5.6)
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xi xj xk

(1)

xi xj xk

xn+1

(2)

xi xj xk

xn+1 xn+2

(3)

xi xj xk

xn+1 xn+2

(4)

(a) Full pose graph

xi xj xk xi xj xk xi xj xk xi xj xk

(b) Reduced pose graph

Figure 5-2: A comparison of the construction of a full vs. reduced pose graph. The
red circles are arbitrary poses in the map that the robot passes. The blue darts are
poses along the vehicle trajectory. Full pose graph: (a) A single loop closure is
detected. (b) To add it to the map a new pose (xn+1) has to be included in the map.
(c) Again a loop closure is detected and a pose (xn+2). (d) The same procedure is
repeated for each loop closure and another pose (xn+3) is added. The result is that
several poses are added to the map that are not added to the reduced pose graph.
Reduced pose graph: (a) A single loop closure has been computed between the
current pose and map pose xi. (b) The vehicle continues moving and acquires a new
loop closure to map pose xj. (c) Another loop closure is detected. Now the chain of
constraints (green links) can be compounded into a single constraint. The sequential
constraint between the last two poses is dropped. (d) The new constraint (green
link) has been added and the vehicle has continued to the next pose and is ready to
create a constraint between xj and xk.
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(a) Triangular grid (b) Square grid

(c) Hexagonal grid

Figure 5-3: Partitioning strategies

5.3.1 Partitioning

To decide which poses to retain, the environment needs to be partitioned in some

way. Which type of partitioning scheme is used depends on the environment and

the motion of the robot, e.g. for a wheeled robot in an office environment one of

the three regular tessellations: equilateral triangles (Figure 5-3(a)), squares (Figure

5-3(b)) or hexagons (Figure 5-3(c)) can be used.

It is interesting to note that the hexagonal partitioning shows up when studying

neurons related to navigation in rats. A collection of cells in the hippocampus,

called grid cells [38], are periodically activated on locations that are centered on the

vertices of an equilateral triangular lattice. These vertices then coincide with the

center points of hexagons that tessellate the space.
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Alternatively the partitioning could be implicitly based on the features seen in

each view. If a view sees a feature that is not visible in other frames, or only visible

in a few other frames then it should be added. In that case the selection of nodes

should be a set of views that see all the features that have been detected. A variant

of this approach is to consider the view volume of each view, then we find a set of

poses that cover the workspace. In our work we typically used a 1.5m square grid

and the heading was split in 30 degree intervals.

5.3.2 Graph Construction

Let us now consider how the reduced pose graph is constructed; a summary is pro-

vided in Algorithm 4. The graph is initialized by defining the first pose as the origin.

There are three primary operations performed: tracking, adding nodes, and adding

loop closures. Let xa denote the active pose and ∆a
t denote the transformation from

the active node to the current position at time t. For simplicity, in the figures below

we denote the sequential motion estimates as ui though they could come from either

visual odometry or wheel odometry. And the vi are intermediate vehicle poses from

the last active pose and are not a part of the map.

Tracking

xa

v0 v1 vt−1 vtu0 ut

∆a
t

∆a
0

Figure 5-4: A graphical model demonstrating the tracking phase.
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The tracker estimates the distribution p(∆a
t |Ut, Zt) where Ut and Zt are the odom-

etry and visual constraints respectively. This is illustrated in Figure 5-4. Based on

our Markov assumption the distribution can be computed recursively

p(∆a
t |Ut, Zt) ∝ p(∆a

t |ut, zt,∆a
t−1)p(∆a

t−1|Ut−1, Zt−1). (5.7)

In practice we track the location distribution by compounding with the new

measurement at each stage. The compounding of uncertain transformations follows

the notation of [94]. Given a chain of transformations {z12, z23} with covariances

{Σ12,Σ23} respectively, the compounded transformation z13 is computed as follows

z13 = z12 ⊕ z23 (5.8)

Σ13 = J1⊕Σ12J
T
1⊕ + J2⊕Σ23J

T
2⊕, (5.9)

where J1⊕ and J2⊕ are the Jacobians of the compound operation ⊕ with respect

to z12 and z23 respectively. This is the first order approximation of the mean and

covariances, where z12 and z23 are assumed to be independent. The factor added to

the graph will then be |f(x1, x3) − z13|Σ13 , where f is a function that computes the

transformation between x1 and x3, i.e. x3 = x1 ⊕ f(x1, x3).

Adding Nodes

When xa⊕∆a
t is in a location that contains no existing pose, then a new node xN+1

is added to the graph and the factor graph is updated according to

p(XN+1, ZM+1) ∝ p(zM+1|xa,∆a
t )p(XN , ZM). (5.10)
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xa

v0 v1 vt−1 vt/xN+1

u0 ut

∆a
t

∆a
0

Figure 5-5: A graphical model demonstrating when a new node is added to the map.

by adding the transformation ∆a
t as a constraint to the new node. The newly added

node becomes the new active node xa and the tracker is re-initialized.

Add Loop Closure

xa xb

v0 v1 vt−1 vtu0 u2

∆a
t ⊕∆t

b

∆a
t

∆a
0 ∆t

b

Figure 5-6: A graphical model demonstrating when a new loop closure is added.

The tracker is always trying to find an alignment with an existing pose. First the

node that is closest to the current position is tested. If that fails a global appearance

based search is used to discover a loop closure. If successful, a new constraint is

added to the graph. The constraint is given by

p(∆b
a|xa,∆a

t ,∆
t
b, xb), (5.11)

where xb is the node being registered to. After the loop closure is added xb becomes

the active node. Next the robot needs to re-localize relative to the map to avoid
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reusing the previous measurement. A re-localization will initialize the active node

and the relative position to it. Alternatively, if enough inliers were found in the loop

closure, they could be split into two sets, one for the loop closure and the other for

re-localizing. In comparison a full pose graph approach would have added a new

pose at the point of loop closure.

In case where xa and xb are the same node it is possible to choose if the current

estimate or this loop closure should be used as the estimate of the position relative

to xa by considering which has higher entropy, using the test det(Σa
t ) > det(Σb

t).

Algorithm 3: Motion tracker algorithm

Data: Q a message queue for the mapper
Input: frame is a new camera frame

1 compute motion estimate
2 publish new position
3 if keyframe changed then
4 add previous match to mapper

5 update match

The sparsity of the graph is enforced by discarding some of the sequential con-

straints. Lets consider an example to better understand what information is lost.

Let xa, xb and xc be poses in the map and vi for i = 0...1 be vehicle poses that

have not been added to the map. In addition we have loop closure measurements

za, zb1, zb2, zc and sequential constraints ui for i = 1..3. The probability density we

are interested in is

p(xa, xb, xc, v1, v2, v3|Z,U) ∝ p(za|xa, z1)p(u1|v0, v1)p(zb1|v1, xb) (5.12)

p(u2|v1, v2) (5.13)

p(zb2|xb, v2)p(u3|v2, v3)p(zc|xc, v3) (5.14)
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Algorithm 4: Reduced Pose Graph Mapping

Data: map the map estimate
Input: matches a queue for incoming matches

1 foreach match ∈ matches do
2 if match successful then
3 update ∆a

t using match

4 else
5 update ∆a

t using wheel odometry

6 extract descriptors from current frame
7 check for loop closure to active node
8 if not found then
9 check for a global loop closure

10 if found then
11 if found node is active node then
12 update transform to active node
13 else
14 add transformation to found node
15 set found node as active node

16 else
17 if in a new place then
18 add a node for new place
19 set new node as active node

20 update map

The dependency between the variables is illustrated with the graphical model in

Figure 5-7.

Now if the vehicle poses v0:3 are marginalized out, then we end up with a factor

that connects all the poses xa:b which in general does not factorize. In the Gaussian

case we have O(k2) factors where k is the number of nodes in the factor. On the

other hand, if we discard the measurement u2 then the factor p(u2|v1, v2) drops out
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xa xb xc

v0 v1 v2 v3
u0 u1 u2

za zb1 zb2 zc

Figure 5-7: A demonstration of what information is discarded by the reduction
algorithm.

and the marginal distribution factorizes into two factors as follows

p(xa, xb, xc|Z,U) ∝
∫∫∫∫

p(xa, xb, xc, v1, v2, v3|Z,U)dv0dv1dv2dv3 (5.15)

=

(∫∫
p(za|xa, z1)p(u1|v0, v1)p(zb1|v1, xb)dv0dv1

)
(∫∫

p(zb2|xb, v2)p(u3|v2, v3)p(zc|xc, v3))dv2dv3

) (5.16)

= f1(xa, xb)f2(xb, xc) (5.17)

where the factors f1 and f2 are exactly the transformations estimated by the

tracking and loop closure part shown before. In the result section we demonstrate

that even if we discard this information the resulting map has comparable accuracy

to the full pose graph which uses all the measurements.

In the case of the graph pruning presented by Kretzschmar et al. [63] the infor-

mation discarded will actually depend on which node gets selected for removal. If v1

is removed after v2 has been added, then in the linearized problem there will be links

between v0, v2 and xb and the links preserved are the most informative links, resulting

from the Chow-Liu algorithm. If xb is removed then some of the information that

is already in the map might be discarded. How much information is removed will

depend on the connectivity of xb. As the system progresses and more edges merge
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during the marginalization it gets difficult to keep track of what information gets

removed.

For the edge pruning algorithm proposed by Eade et al. [17] the cliques are

always constructed and edges are only removed when the degree of a node reaches

some threshold. So the odometery constraint u1, that the RPG discards, might get

discarded at some point if it belongs to an edge with the least residual error of its

neighbors. In addition, the marginalization procedure used will reuse measurements

which can make the estimator inconsistent.

In addition to the benefit of RPG reducing the dimensionality it is also beneficial

that most of the updates to the map are adding new constraints and not variables,

which can be applied incrementally in an efficient manner using the iSAM algorithm

[53] for pose graph optimization, which also includes an incremental implementation

of the Powell’s Dog Leg algorithm [89] allowing the use of robust cost functions for

the edges.

5.4 Results

To evaluate the RPG algorithm we used the groundtruth vision dataset that was

mentioned in Chapter 4. The RPG is compared to a full pose graph and the reduction

algorithm presented by Eade et al. We present results for a 4 hour dataset collected

on the same floor, so the same area is repeatedly explored. In addition, we also show

results from processing a 9 hour sequence covering multiple floors in the MIT Stata

Center. The data was collected over a 6 month period. For the timing information

a Intel(R) Core(TM) i7-2920XM CPU @ 2.50GHz machine was used. The system

runs in two separate threads so two cores were used, one for the visual odometry and

another for the mapping.
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5.4.1 Comparison to a Full Pose Graph

To evaluate the system we considered both the accuracy of the map and the compu-

tation time used. This was compared using a 4 hour dataset collected on the second

floor of the Stata Center. The data was collected on a single floor and includes

multiple visits to the same location. After the 4 hours the full pose graph approach

used the majority of the available computation time for optimizing the graph (See

Figure 5-8). While the reduced pose graph (RPG) was able to comfortably process

a longer sequence, as shown in Figure 5-16. For the full pose graph as more time

is spent on the map estimation it will eventually affect the localization accuracy of

the system. The core system infrastructure was developed to adaptively balance the

load so that it can meet real-time requirements when running on a robot. This is

achieved by having the mapping thread consider a limited number of loop closure

proposals and also adapting how often the map optimization is executed. Thus, as

the pose graph grows, the system cannot keep up, and fewer and fewer frames are

registered with the map.

The resulting maps for this sequence are shown in Figure 5-9(a) and Figure 5-

9(b) for the full pose graph and reduced pose graph respectively. The accuracy of

the estimated maps is provided below and the distribution of the errors is shown in

Figure 5-10.

Median (m) Mean (m) StdDev (m) Poses

Full pose graph 0.37 0.43 0.27 28520

Reduced pose graph 0.44 0.46 0.29 1363
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Figure 5-8: Timing results when using a full pose graph for a 4 hour sequence.
The top plot shows the time for each component of the SLAM system as a function
of exploration time. The middle plot shows the time for those components that have
time complexity that grows with the size of the graph. The bottom plot shows the
number of nodes in the graph, both for the pose graph and the reduced pose graph.
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(a) Pose graph – 28520 poses
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(b) Reduced pose graph – 1363 poses

Figure 5-9: A comparison of a full pose graph vs. a reduced pose graph from 4 hours
of traversal. The green is the groundtruth trajectory and red are the estimated
trajectories. The average error for the full pose graph is 0.43m while it is 0.47m for
the reduced pose graph.
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Figure 5-10: Shows the error distribution for the pose graph and reduced pose graph.

5.4.2 Comparison to Edge Pruning

We implemented the edge pruning algorithm for comparison to the reduced pose

graph. As our system uses stereo vision we did not implement the complete system

as described. Instead we adapted it to our visual SLAM system. The three primary

operations, edge combination, marginalization and edge pruning were implemented

in the same way. The degree threshold used was 8 as in the original paper. The

max length threshold was set to 10, but it was not specified in the paper. The

same partitioning as used in the reduced pose graph was used to choose which nodes

to remove. The initial pose is kept and others are removed. In addition we never

remove the most recent poses. The median errors are similar though the edge pruning

contained some outlier poses. The methods used in the edge pruning algorithm can

also be applied on top of the reduced pose graph to further bound the size of the

graph.

Median Mean StdDev Poses

Full pose graph 0.34 0.471 0.34 4062

Reduced pose graph 0.42 0.52 0.34 994

Edge pruning 0.57 0.93 0.89 607
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(a) Pose graph – 4062 poses
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(b) Reduced pose graph – 994 poses

50 60 70 80 90 100 110 120 130 140 150

85

90

95

100

105

110

115

120

125

130

X position (m)

Y
 p

o
s
it
io

n
 (

m
)

 

 

Groundtruth

Edge pruning

(c) Reduction by node removal – 607 poses

Figure 5-11: Comparison of a full pose graph, a reduced pose graph and edge pruning.
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5.4.3 Error Over Time

One question to consider is if it helps to continually add information to the graph. By

continually adding measurements, the overall accuracy of the map can be improved

over time, as shown in Figure 5-12. The benefit is even more apparent when using

periodic batch optimization and a robust cost function, as shown in Figure 5-13.

The blue and red lines are the pose graph (PG) and the green and cyan are

the RPG. The error is computed by aligning to poses from the first session. The

error given is then the average horizontal distance from the estimated pose to the

corresponding groundtruth pose. Initially the error is high because there are no

large loop closures, so the error comes from dead reckoning drift of the system.

Slight angular error can easily generate large translation error when moving over a

large area. After the initial loop closures are applied the error goes down sharply

and then gradually decreases as more information is added.

These results show the benefit of using a robust cost function in comparison to

the squared cost. When using squared cost a bad measurement can have a large

impact on the solution and increase the error. As more measurements are added a

bad measurement will eventually end up in the optimization. By continuously adding

measurements these bad measurements can be detected by comparison with existing

measurements between the same nodes.
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Figure 5-12: Estimation error for a subset of the poses over time using iSAM incre-
mentally. The blue and red lines show the error for the full pose graph using squared
and pseudo-Huber cost respectively. The green and cyan lines are the estimation er-
rors for the reduced pose graph. The estimation error is computed as the Euclidean
distance, in the XY plane, between the estimated position and the groundtruth.
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Figure 5-13: Estimation error for a subset of the poses over time using iSAM in batch
mode. The blue and red lines show the error for the full pose graph using squared and
pseudo-Huber cost respectively. The green and cyan lines are the estimation errors
for the reduced pose graph. The estimation error is computed as the Euclidean
distance, in the XY plane, between the estimated position and the groundtruth.
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5.4.4 Complexity analysis

In this section we analyze the complexity of the reduced pose graph algorithm. We

will look at the complexity of Algorithm 4 in terms of the number of poses N ,

measurements M , partitions K, and the size of the environment A.

The reduced pose graph mapping is run on a thread separate from the visual

odometry. The sequential matches from the visual odometry thread are added to a

queue. Each time the mapping thread enters the update method it processes all the

matches in the incoming queue and finishes by updating the map. We assume that

on each update there are constant number of frames in the queue. In the table below

we provide the time complexity for each step.

Step Lines Complexity

Update transforms 2 - 5 O(1)

Extract descriptors 6 O(1)

Check local loop closure 7 O(1)

Check global loop closure 9 O(N)

Update active transform 12 O(1)

Add measurement 14 - 15 O(1)

Update map 20 O(N3 +M)

Updating the transformation is constant time it only depends on the size of a

single pose. Extracting the descriptors is linear in the number of features in a single

frame. The local loop closure consists of a lookup for the nearest partition and then

an alignment between the frames. The partitions are linearly indexed and stored in

a vector so the lookup is constant. Only a single frame in a partition is tested by

alignment. The alignment depends on the number of features in each frame so the

operation is constant. The global loop closure needs to first search the appearance
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based index which is O(N) [8]. Adding a new node is a constant operation because

the estimate is not updated immediately when a new node is added. The final step

is the map update, this includes updating the estimate of the variables given the new

measurements and the updating the space partitioning given these new estimates.

We use the iSAM library for computing the map estimate. The complexity of

that algorithm is presented in [50]. The algorithm consists of incremental steps and

a periodic batch update. For simplicity we only consider that batch step here. The

complexity is very much dependent on the structure of the problem. For general

problems the worst case is when the information matrix becomes fully dense and

the complexity is O(N3 +M). For the SLAM problem the problem is typically very

sparse, for pure exploration the complexity is O(N + M), and when connectivity is

restricted by limited sensor range and the graph can be reduced to a planar graph

the complexity is O(N1.5 +M).

The number of partitions grow with the area that the robot has traversed so it

will be at most proportional to the total area, i.e. K = O(A) where K are the

number of partitions and A the area of the environment. The number of poses N

in the graph are determined on line 17 in Algorithm 4. A pose is added each time

a new place is explored and this should result in the number of poses to grow with

the number of partitions, but because the current estimate of the robot is used to

determine if the robot is in a new place or not it can fail if the robot is not properly

localized to the map. This can result in unnecessary poses to be added. Let E be the

number of times the, is in a new location test, fails. Then the number of poses grow

as O(A+E). If the test fails for some fraction of the time then the number of poses

will still grow linearly with time even though at a significantly reduced rate. The

effect of this can be seen in Figure 5-14. Even though the growth of the number of

poses has significantly reduced there is still a slight increase in the number of poses
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over the 4 hour period.

To guarantee a bound on the graph size it will eventually be necessary to remove

the extraneous poses. A comparison of the reduced pose graph with and without

node removal is shown in Figure 5-15. Here we use the node removal method used

in the edge pruning algorithm we compared to earlier.

In the reduced pose graph the number of measurements will continuously grow.

To bound the number of edges it is possible to combined edges that connect to the

same pair of nodes. Though it might be beneficial to delay that reduction until

multiple measurements are available. That way a robust cost could be applied when

combining the edges. In the table below we compare the regular RPG algorithm with

combining edges and removing nodes. We also consider removing nodes only at the

end and then periodically for every 1000 measurements. The results suggest that we

benefit from not removing nodes to early. Given how slow the reduced pose graph

grows it would be sufficient to remove nodes only after several hours of operation.

How to efficiently remove nodes and combine edges without sacrificing accuracy is

an interesting topic of future research.

Median Mean StdDev Poses Factors

RPG 0.34 0.35 0.16 1363 4333

RPG / combined edges 0.38 0.42 0.27 1364 3433

RPG / node removal at end 0.39 0.41 0.23 1003 2626

RPG / node removal every 1000 0.75 0.78 0.44 888 2458

The memory usage results from storage of keyframes, measurements, and state

used for the map estimation. One keyframe is stored for each pose in the map esti-

mate, so the storage for the keyframes is O(N). The memory for the measurements

is O(M) because each measurement only relates to a constant number of poses. The
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Figure 5-14: The number of poses as a ratio of area covered for the full pose graph
and for the reduced pose graph with and without node removal.
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(a) Reduced Pose Graph – 1363 poses
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(b) Reduced Pose Graph with node removal – 888 poses

Figure 5-15: Comparison of a reduced pose graph with and without node removal.
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map estimation maintains the square root information matrix, R, for the linearized

non-linear least squares problem. The memory required depends on the density of

R. It is O(N) for exploration, O(N logN) for planar graphs, and O(N2) in general

when the matrix is dense. Again, for the SLAM problem we typically have a very

sparse matrix.

Even though the keyframes grow linearily there is a fairly high constant that

needs to be considered. On average we store around 200 features per keyframe. For

each feature we store the position of the feature with respect to the frame, the level

it was detected on, a tracking id and a descriptor. When we use a 32 byte BRIEF

descriptor, each frame takes around 10KB of memory. While the constants for the

measurements and the R factor are in the 10’s of bytes.

5.4.5 Long-term Multi-floor Mapping

We evaluated the system on nine hours of data that was collected in the Stata Center.

The data was collected with the PR2 robot over a 6 month period. It includes visits

to multiple floors in the building. An overview of the map constructed is shown in

figure 5-17. The height has been exaggerated to make it easier to see each floor. The

points are the features extracted from the stereo views associated with the poses in

the map. As shown in Figure 5-16 the rate at which nodes are added to the graph

reduces as time progresses. When new areas were first explored this rate increased

as each new place was recorded. The loop proposal and the optimization modules

grow in complexity as more nodes are added to the graph. However, these modules

account for only a small fraction of the total running time of the system and are

much reduced when compared to the traditional full pose graph. The majority of

computation time is spent on frame registration and feature extraction, both of which
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Duration of Experiment 6 months
Operation time 9 hours
Distance Traveled 11 km
VO keyframes 630K
Failed VO frames 87K
Registrations 303K
Loop proposals 30K

Table 5.1: Approximate figures of interest corresponding to the 10 floor experiment
illustrated in Figure 5-17.

are constant time. Visual odometry runs at 30Hz on a separate thread, and loop

closure runs at 2Hz.

5.5 Discussion

In this chapter we have described how we can reduce the complexity of the pose

graph algorithm when operating for a long time duration in the same environment.

As discussed in Section 5.4.4, the complexity of the algorithm depends on how well

the robot is localized when traveling through previously mapped areas. An ideal

situation would be a high quality camera navigating in a feature rich and well-lit

environment. In this case we would expect the camera to stay well localized at

all times. Failures would be more likely to occur in situations with few features,

rapid camera motion, and/or poor lighting. In these situations, the tracking can be

improved by tightly integrating IMU measurements with the motion estimate [76].

Another challenge is presented by dynamic environments. This can include ob-

jects moving in front of the camera or gradual changes occuring in the environment.

The vision system has some robustness to objects that partially obscure the camera

view because a set of inliers is found when the rigid body motion is computed. This

139



0 50 100 150 200 250 300 350 400 450 500
0

1000

2000

3000

Exploration Time [mins]

N
o

. 
S

L
A

M
 p

o
s
e

 n
o

d
e

s

 

 

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

Exploration Time [mins]

T
o

ta
l 
C

o
m

p
u

ta
ti
o

n
 p

e
r 

s
e

c
 [

s
e

c
]

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

Exploration Time [mins]

T
o

ta
l 
C

o
m

p
u

ta
ti
o

n
 p

e
r 

s
e

c
 [

s
e

c
]

 

 

SLAM Optimize

Loop Proposal

Registration

Feature Extraction

Feature Matching

Reduced Pose Graph

Figure 5-16: Timing results when using a reduced pose graph for a 9 hour se-
quence. The top plot shows the time of each component of the SLAM system as a
function of exploration time. The middle plot shows the time for those components
that have growing time complexity. The bottom plot shows the number of nodes in
the graph. 140
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Figure 5-17: Left: A map of ten floors of the MIT Stata Center created using the
reduced pose graph in combination with a real-time visual SLAM system. The data
used was collected in 14 sessions spanning a six month period. The total operation
time was nine hours and the distance traveled was 11km. Elevator transitions are
shown as vertical blue lines. The view is orthographic and the vertical axis has been
exaggerated to make it easier to see each floor. The 2nd floor is approximately 90m
across. Right: Floor plans for each of the floors that were mapped.
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results in features on moving objects to be rejected. On the other hand, if the object

completely blocks the view of the camera, then the vision system will fail. We en-

countered this when traveling in elevators; in that case, we used IMU data to detect

the vertical motion. This is of course a very restricted type of motion. Sensor fusion

that could invalidate the camera motion estimate in a more general setting would be

beneficial to the robustness of the system.

When operating for a long duration of time in the same environment we can

expect gradual change. The system is robust to occasional objects appearing and

disappearing, assuming there are enough background features that can be used for

localization. On the other hand if a majority of the environment changes, then this

would affect the localization accuracy. For example, we can consider a conference

room where each time the robot visits the room, the configuration of the chairs is

modified. Assuming that the chairs are needed to localize, the RPG algorithm would

simply keep the representation from the first visit to the room. If the room changed

significantly enough, then the robot would only perform dead-reckoning while in the

room. If it spent enough time in the room, the position estimate would drift, and,

as discussed before, the poor localization would result in new nodes to be added.

This problem could be addressed in several ways. One approach would be to

always add nodes if the system fails to align to the existing map and then rely

on node removal to bound the growth. This would cause the map to continuously

change. A better approach would be to incorporate higher-level understanding in the

representation, e.g. that chairs in a conference room tend to move around. In this

case, one could perhaps use a two level mapping approach, by including a short-term

transient map that can be “thrown away”, while also keeping a stable background

map. In this way the robot could localize in the room using the current configuration

yet not try to remember it for later visits. A related approach was pursued by Biber
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and Duckett [1], who maintained maps over multiple temporal scales for long-term

dynamic mapping in two dimensions with lidar.

The results we have presented are from an indoor dataset which is typically a

constrained environment. For this situation, the uniform partitioning of the space

worked well. In more general situations containing large open spaces, it might be

worth considering different partitioning strategies. For instance if distant features

are commonly used for localizing it might be better to explicitly model these struc-

tures and then build constraints between them as the robot navigates around the

environment. Also considering a non-uniform partitioning might be useful, e.g. a

single room, or to represent some closed section of the environment with its own

model. That approach would lead to a submapping strategy similar to what was

used in the Atlas framework developed by Bosse et al. [5].

In Chapter 3 we presented methods for localization and mapping using sonars

in an underwater environment. When operating underwater we often encounter

environments that are have sparse features. In those situations it might be useful

to group together a cluster of features and estimate their structure, similar to what

we proposed above, and then to continually estimate the transformation between

these structures. Another problem is that the natural structure of the environment

is often repetitive, which could cause failures for loop closures based on a single

view. To avoid this, it would be possible to combine multiple views and try to

achieve loop closures that cover larger areas. Another thing to consider is that for

underwater imaging we frequently need to carry our own light source, which can

cast view dependent shadows, making matching more difficult. There have been,

however several successful applications of vision for SLAM in the underwater domain

[55, 65, 86] that give us confidence that the RPG algorithm would be successful in a

wide range of underwater applications.
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Chapter 6

Kinect Monte Carlo Localization

Once a model of an environment has been constructed, it can be useful to perform

localization with respect to the prior map. In this chapter we describe how the

output of the visual SLAM algorithm can be used to generate a simplified 3-D model

of the environment and how it can be used for efficient Monte Carlo Localization

using an RGB-D camera. 1

6.1 Creating a 3-D Building Model

In many situation it can be useful to localize relative to a prior map. Using the

pose estimates from the visual SLAM system, a 3D model of the environment can

be constructed by reprojecting the points associated with each pose into a common

reference frame. An example of such a model is illustrated in Figure 6-1 (top).

1The work presented in this chapter was performed in close collaboration with M. Fallon and has
been previously published in [26]. The contribution of this thesis was the development of the GPU
based scene prediction that enabled on-line operation of the system. Fallon led the development
of the particle filter estimation algorithm and performance evaluation, which are included in this
chapter to provide a complete description of the system. Fully connecting KMCL with the output
of the reduced pose graph algorithm presented in Chapter 5 is an item for future research.
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This representation provides a visually appealing reconstruction of the building and

could be further processed to form a volumetric mesh reconstruction. Additionally

a voxel-based occupancy tree could be used to aid path planning.

For the purposes of robust localization, we can also generate a simplified model

of a large planar structure which is (1) unlikely to change (2) anchored on the pose

graph and (3) of very small size (<10MB for the entire building). This approach

extracts large planes from a single point cloud using RANSAC and then progressively

grows the planes using nearby scans. The resulting plane-based model is presented in

Figure 6-1 (bottom). This can be further extended by extracting the planes locally

and then associating them with the poses, so that it is not necessary to perform the

plane extraction process the second time around.

6.2 Monte Carlo Localization

Monte Carlo Localization (MCL) is a probabilistic localization algorithm that has

been successfully used to localize a robot in a 2D occupancy grid using a laser ranger

finder [16,101], while we will use a 3D planar world model and a RGB-D camera to

localize. It localizes the robot by estimating the posterior distribution of the vehicle

location given all its sensor measurements.

Let xt be the robot location at time t and without loss of generality we assume

that the robot makes a single sensor measurement zt at each time step. In addition

it receives a control input ut at each time step. The set of all measurements up

to time step t is given by Zt. It is assumed that the motion model is Markov and

that the sensor measurements are independent, given the position of the robot. The

graphical model for the distribution is shown in Figure 6-2, and the joint probability
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Figure 6-1: Output of the Visual SLAM system: A dense 3-D point cloud of the
2nd floor of the Stata Center (top). Input to the KMCL Localization system: A
simplified model made up of only large planar objects (bottom).

density for the model is given by:

p(Xt, Zt, Ut) = p(x0)
t∏

i=0

p(xi|xi−1, ui)p(zi|xi)p(ui) (6.1)

To localize the robot we are interested in the current position xt given all measure-

ments and controls. This is provided by the posterior probability density p(xt|Zt),
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Figure 6-2: Graphical model for localization.

which can be computed using a Bayesian filter approach [99].

The Bayes filter allows us to update the posterior recursively:

p(xt|Zt, Ut) =
p(zt|Xt, Zt−1, Ut)

p(zt|Zt, Ut)
p(xt|Zt−1, Ut) (6.2)

∝ p(zt|Xt)

∫
p(xt|Xt−1, Ut)p(xt−1|Zt−1, Ut)dxt−1 (6.3)

= p(zt|xt)
∫
p(xt|xt−1, ut)p(xt−1|Zt−1, Ut−1)dxt−1 (6.4)

where in the last step we use the assumption of conditional independence of mea-

surements given robot trajectory and independent controls. The motion model is

given by p(xt|xt−1, ut), and p(zt|xt) is the sensor model or the likelihood of the sen-

sor measurement. The bottom left image in Figure 6-3 gives an example of a sensor

measurement (zt) from a RGB-D camera, and top right is the predicted image based

on the map.

In general it is not tractable to compute the full posterior distribution. To track

the posterior distribution we use a particle filter as was initially proposed for robot

localization in [16]. More generally, particle filtering was initially proposed by Gordon

et al. [34] also known as Sequential Monte Carlo (SMC).

A particle filter represents the posterior distribution by a set of weighted Monte
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Carlo importance samples. At each time step the particles are propagated according

to Equation 6.4. Given a set of N particles where xkt is particle k at time step t

they are first propagated using the motion model p(xt|xt−1, ut). The propagation is

done by random sampling from the motion model. Then for each particle the sensor

model, p(zt|xkt ), is evaluated and the weights are updated accordingly. In the next

section we will describe a method to efficiently evaluate the sensor model, which is

crucial to achieving good performance.

6.3 Likelihood Function

We now turn our attention to how to efficiently compute the likelihood for each

particle using the current depth image provided by the camera. At each time step

the particle weights are updated using the likelihoods. The likelihoods are computed

for each particle. Efficiency of the computation impacts how many particles can be

used and thus the accuracy of the filter.

The computational complexity is significantly reduced by down sampling the

incoming RGB-D image by a factor of 16–32. From our experiments we have seen that

from the 640x480 pixel image/cloud, a sufficiently informative likelihood function

is possible using a 20x15 image. The likelihood is then evaluated on this smaller

image and indicates how likely each particle is, given its position, the current sensor

measurement, and the map.

In the following sections we describe and compare two different likelihood func-

tions. First, we describe a novel approach which simulates model views and then

compares them to the measured data. Then, in Section 6.3.2 a method similar to the

ICP scoring function is described. Finally, a short comparison of the two methods is

given in Section 6.3.2.
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6.3.1 Generated Range-Image Ray-to-Plane Function

We propose to compute the likelihood of a particle pose by directly generating the

range image that would have been measured from that location using the prior 3-D

model. This range image is generated by finding the closest intersection between a

(a) Simulated Color Image (b) Simulated Depth Image

(c) Measured Color Image (d) Measured Depth Image

Figure 6-3: Using a prior 3-D building model we efficiently generate simulated depth
and color views (top) which are then compared to RGB-D camera data (bottom).
Using a particle filter, hundreds of similar views are evaluated and used to estimate
the sensor pose in 3-D.
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ray through the optical center and a point on the image plane with the prior map for

each point in the simulated range image. However instead of brute-force ray-tracing

to find the intersection of each ray with each plane, it is possible to render each

plane directly to the image plane instead. The distance to the closest plane can then

be queried from the associated Z-buffer. The Z-buffer is used by computer graphics

systems to decide, for each pixel, which object is closest to the virtual camera and

hence should be rendered — essentially being the depth of the nearest object. This

rendering approach is supported in all modern Graphical Processing Units (GPU)

and the depth image for each particle can be rendered very efficiently in this manner.

Our implementation uses the OpenGL library to render the simulated image for

each particle. This is similar to the approach in [81] which used gradients in the color

image, however here we use the depth information. When OpenGL renders an image,

such as our 3-D model, it natively uses the Z-buffer to determine hidden surface

removal. After rendering, the Z-buffer values can be read and used to compute the

likelihood of the current sensor measurement conditioned on the pose of the particle.

GPU implementation

Before comparing the sensor depth with the Z-buffer values there are a few technical

issues in the rendering pipeline that need to be taken into account. First all plane

polygon vertices are transformed, using the model transform, into the camera coor-

dinate frame. (Note that OpenGL defines the camera look axis along the negative

Z-axis.)

After the model transformation, the projection transform is applied. This pro-

jection creates the clip coordinates, which are in homogeneous coordinates, with

each rendering primitive clipped to the box (−w,−w,−w), (w,w,w). The z values
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are projected in such a way that everything outside the range [−zn,−zf ] is clipped,

where zn and zf are the near and far range of the z-axis [110]. For the Kinect RGB-D

sensor zn is 0.7m and zf is 20m. Finally the projected inverse depth in the range

[1/zn, 1/zf ] is mapped to [0, 1] before it is written to the Z-buffer which we can then

access.

For a camera calibration matrix K

K =


fx 0 −cx 0

0 fy −cy 0

0 0 1 0

0 0 0 1

 (6.5)

the projection matrix can be written as KP

P =


2/W 0 1 0

0 2/H 1 0

0 − zf+zn
zf−zn

− 2zf zn
zf−zn

0 0 −1 0

 (6.6)

where W and H are the image width and height respectively. An example depth

image is illustrated in Figure 6-3. Next we compare it to the measured image (also

illustrated) to produce a likelihood for the particle pose.

To achieve good performance when using the GPU there are several things to

consider. It is essential to try to minimize the amount of information being sent

between the GPU and the CPU. To address that we used vertex buffers to transfer the

geometry onto the GPU. Thus only a single invocation is required for each particle.

We also tested moving the computation of the likelihood function onto the GPU.
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This was implemented using a custom GLSL (OpenGL Shading Language) shader.

The likelihood function was precomputed on the CPU and sent to the GPU as a

texture. Finally, we implemented an aggregated sum method to add together the

individual point values for each particle. Thus it is sufficient to send an image that

is of size N ×N for N2 particles instead of all the depth values.

We compared having the likelihood computation and the aggregated sum on the

GPU vs the CPU. The depth image was still generated using the GPU. The model

used contained 5024 triangles and covered the 2nd floor of the MIT Stata Center.

The results are shown in Table 6.1. Each result is the average of 100 runs, and we

compared for different image sizes. We found that when using the smaller sizes there

is little benefit in having the GPU do the likelihood computation. This is because

for each particle a draw call is issued to the GPU, which incurs some overhead. In

the results reported later, the CPU version was used for the likelihood computation

and sum aggregation.

A further improvement to the algorithm would be to use geometric instancing and

viewport arrays (which have recently been added to OpenGL). Thus the particles

could be sent in groups and fewer calls made. For very large models a further

improvement might be to store the models in an efficient structure like octrees and

only render the parts that are visible. However, one needs to be careful that the work

for each particle to determine visibility does not outweigh simply rendering that part

of the model, as the GPU is very efficient at culling and clipping vertices that are

not visible.
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Image size Time on CPU (ms) Time on GPU (ms)
20 x 15 3.8 3.7
40 x 30 4.4 4.1
80 x 60 7.2 5.1

160 x 120 11.6 6

Table 6.1: Performance of the likelihood computation using 10x10 particles.

Figure 6-4: An example of the contents of the depth buffer for multiple particles.

Likelihood Formulation

To compute the particle likelihood either the inverse depth Z-buffer values can be

converted to depth, or the RGB-D depth data can be converted to the inverse depth.

As the accuracy of camera depth measurements is a linear function of inverse depth

we propose to formulate the likelihood function in inverse depth space. This is similar

to the approach taken in monocular camera SLAM, for example [11].
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For a given particle x
(k)
t at time step t, the generated inverse depth image, ZG

(k) =

(z0
(k), . . . , z

N
(k)), containing N points is generated as described above. For each inverse

depth pixel, zit, in the measured image ZM
t = (z0

t , . . . , z
N
t ), the likelihood is evaluated

as follows

p(zit|x
(k)
t ) = βcrN (zit; z

i
(k), σ

2
d) + (1− β)U(0, 1) (6.7)

where the inverse depth varies in the range (0, 1). An appropriate normalization

constant, cr, was added for the truncated normal distribution and the inverse depth

variance σ2
d was chosen to be 0.1m−1. The addition of the uniform distribution

supports heavy-tailed behavior, and in doing so each point in the cloud has only a

small effect on the overall likelihood function. The parameter β = 0.01 was found to

give good experimental performance.

The overall likelihood of the particle is then the product of the point likelihoods

across the entire cloud

p(Zk|x(k)
t ) =

Ni∏
i=1

p(zit|x
(k)
t ) (6.8)

The procedure is repeated for each of the particles in the cloud and the weights

are then updated to produce an estimate of the posterior distribution at the current

time

w̃
(k)
t ∝ w̃

(k)
t−1p(Zk|x(k)

t ) (6.9)

Residual resampling is carried out whenever the effective sample size of the particle

set falls below 0.5.

Figure 6-5 illustrates the inverse depth parametrization of the likelihood function

described in Equation 6.7. It has been projected onto the depth axis, evaluated

for a series of nominal model depths. For points at shorter range the function is

much more discriminative than for points at larger ranges — directly matching the
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Figure 6-5: Inverse Depth-parametrized likelihood function evaluated for a variety
of nominal model depths. This parametrization evaluates high-range depth points
with higher variance than shorter ranges — accurately representing the underlying
disparity measurement uncertainty.

measurement error distribution. This allows us to take advantage of Kinect depth

measurements all the away up to 20 meters away.

While this approach is a principled way of utilizing the noisy long-range Kinect

RGB-D data, discretization of the measurement depth values (in the range (0−2047))

as well as texture dependent biases are evident at long ranges (>15m).

In addition to depth information, this method can be supplemented with basic

color information by reading the color buffer to produce colored model views similar

to that illustrated in Figure 6-3. By defining a color-based distance metric, indi-

vidual color pixels could contribute to the particle weighting using an extra term in

Equation 6.7. This would be useful in long shapeless corridors for example.
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6.3.2 Pure Euclidean Point-to-Plane Function

For comparison to the method proposed above, we also developed a more traditional

likelihood function. It operates in a manner somewhat similar to the cost function

of the Iterative Closest Point (ICP) by evaluating the Euclidean distance between

the RGB-D point cloud (transformed by the proposed particle pose) and the planar

submap.

For a given particle x
(k)
t , the RGB-D cloud is first transformed onto the particle

pose and the minimum point-to-plane distance is found by comparing each point,

zi(k), from the cloud to each plane, sj, in the submap mentioned above

d
(k)
i,min = arg min

j
‖zi(k) − sj‖ (6.10)

where ‖ ∗ ‖ represents the distance from point to plane.

Given this distance, the individual point likelihood is then evaluated using a

form similar to Equation 6.7, with the per particle likelihood being the product of

the individual point likelihoods.

Comparison Between Functions

Both of these methods demonstrate similar accuracy when there is a good alignment

between the measurements and the building model (See Section 6.4). While the latter

method has been demonstrated to be significantly more computationally intensive,

additionally it demonstrates a failure mode that our proposed method does not suffer

from. ICP search is well known to suffer from poor convergence when incorrectly

initialized and the Euclidean-based particle filter has been observed to demonstrate a

similar behavior. An example situation is that presented in Figure 6-3. The method
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Figure 6-6: The generative likelihood function evaluated as a contour surface with
10 cm spacing (in 2D) around the location illustrated in Figure 6-3 (denoted by the
red circle). The walls and railings are in black. The multi-modal surface has a broad
peak at the correct location ensuring stable MCL.

is prone to incorrectly associating depth points from the wall to the model’s railing,

resulting in an incorrect local minimum and a possible failure of the particle filter.

The likelihood surface for the proposed generative method does not suffer from

this issue as illustrated by the generative likelihood surface illustrated in Figure 6-6.

The ICP surface, by comparison, would have significant peak 1 m behind the true

location by mismatching the railings in the model to the lower part of the wall.
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6.4 Results

The accuracy and the performance of the system was evaluated using datasets from

several different platforms: a robotic wheelchair, a Willow Garage PR2, an Ascending

Technologies quadrotor, a man-portable mapping device and an RWI B21 wheeled

mobile robot.

Each platform was equipped with a forward facing Microsoft Kinect camera. For

all the platforms except the quadrotor, an accurate estimate of the ground truth

pose was estimated using a laser base pose graph SLAM and a Hokuyo UTM-30LX

laser rangefinder mounted in the primary plane of motion, and was used to estimate

the localization error of the KMCL system. The height of the sensor varied between

1–2 meters, which demonstrates the flexibility of this approach.

6.4.1 Localization accuracy

Each dataset was post-processed using the KMCL algorithm and a trajectory gen-

erated. Figure 6-7 shows a trajectory for the PR2 dataset — the red lines are the

vehicle trajectory and the black dots are the ground truth estimated using the LI-

DAR. In Table 6.2 numerical results are provided using 350 particles.

No major failures of the localization algorithm occurred in these experiments (i.e.

the entire particle set diverging), although troublesome locations containing little or

no visual or geometric features do exist within the building - such as long corridors

or blank walls. In these locations, the particle set naturally disperses somewhat un-

til some conclusive geometric information is observed, at which point the particle

distribution coalesces to a single mode and continues accurate tracking. These situ-

ations, despite being representative of the underlying position uncertainty, result in

an increased error result in Table 6.2 and Section 6.4.2. For small particle sets these
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Figure 6-7: Top-down view of performance for the PR2 localizing. The main walls
in the map are shown in blue while each robot’s Kinect MCL output is shown with
a red line. Black dots indicate the ground truth position during the runs (estimated
using LIDAR SLAM) which indicates accurate localization.

situations can also result in particle filter divergence (as discussed in Section 6.4.2).

The error metrics we chose were median absolute error, and the percentage of

SLAM poses lying within a 3σ interval of the weighted particle mean. As indicated

in the table, typical median error is of the order of 40 cm. This value is inflated due to

poor performance in the aforementioned locations. While Table 6.2 seems to indicate

increased error with increased speed, we believe that improved VO integration will

reduce this effect.

In particular the data for the man-portable system exhibits significant motion

blur and frequent visual odometry failure; thus the results with this system indicate

the robust nature of our approach. Additionally the quality of the 3-D map and the

choice of image downsample factor are other parameters that could be studied so as

to improve performance further.
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Platform Duration Distance Speed Median Error 3σ %
Units seconds m m/s m %

Man-carried 94 99 1.05 0.66 52
Wheelchair 180 215 1.20 0.48 75
Quadrotor 45 ∼30 ∼0.66 n/a n/a

PR2 266 126 0.47 0.30 0.90
B21 349 152 0.43 0.33 0.84

Table 6.2: Performance of the KMCL algorithm (using 350 particles) for the trajec-
tories in Figure 6-7.

6.4.2 Performance

The performance of the algorithm was quantified with a series of Monte Carlo runs

using the robotic wheel chair dataset. The dataset consisted of a 3 minute sequence

covering 215 meters. The number of particles used was varied between 12 to 400.

For each setting the algorithm was run for 20 independent runs.

To compute the accuracy of each run the particle filter trajectory was aligned

with the LIDAR poses. As shown in Figure 6-8, the results show accuracy and the

stability of the particle filter for varying numbers of particles.

Comparing the two different likelihood functions, we observed roughly equivalent

localization accuracy with equal numbers of particles — with the Euclidean likelihood

function being slightly more accurate. The main difference between the two methods

was in the computation time. For 100 particles and a frame rate of 10 Hz, the

generative method is real-time, while the Euclidean method is 5 times slower than

real-time. The slow pace of the Euclidean likelihood precluded us from testing with

200 and 400 particles (where the gap was even wider).

In conclusion a stable real-time operation with 350 particles was realized, using a

4-core 2.53GHz Pentium Core2 powered laptop with an Nvidia Quadro 1700M with
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32 Cores. The computation was split between two CPU cores, one for the data cap-

ture and VO, and another for the Monte Carlo localization, processing 7–8 frames

per second. In regions of low uncertainty as few as 10 particles are required for opera-

tion. Implementation of an adaptively resizing particle cloud would be useful in such

circumstances [32]. Further optimizations such as submapping and instanced render-

ing will allow more particles which improves accuracy, thus improving operations in

challenging locations. Finally, incorporating IMU will improve the particle propaga-

tion, filling in gaps where the VO fails, in addition to giving absolute measurement

of vertical axis with respect to gravity.

In this chapter we demonstrated a system for localization using RGB-D cameras.

Because these cameras are fairly inexpensive compared to laser range finders this

technology is interesting for enabling localization on a wide range of robots. Future

improvements that could be made to the system include: (1) incorporating IMU

information, and (2) increasing the efficiency of the scene prediction algorithm. In

addition, it would be interesting to combine the technique presented in this chapter

with the visual SLAM algorithm presented in Chapters 5 and 4, which could improve

the robustness of the whole system.
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Figure 6-8: Performance metrics for both likelihood functions (averaged for 20 sep-
arate runs). Typical performance for 100 particles is of the order of 0.5 m median
error and 78% of estimates within 3σ of the true location. Note that for some failed
runs with low particle numbers the median error is greater than 3.5m.
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Chapter 7

Conclusion

One of the fundamental problems of mobile robotics is simultaneous localization and

mapping. In this thesis we have presented imaging-sonar aided navigation for under-

water applications and a complete visual SLAM solution which was evaluated on an

indoor dataset. To address challenges in mapping imposed by lifelong autonomy we

proposed a reduced pose graph (RPG) model that proved robust while drastically

reducing the complexity of the optimization. The effectiveness of the RPG was eval-

uated using an extensive dataset that included nine hours of data, traveling eleven

kilometers, and collected over a six month period.

7.1 Contributions

This thesis has made several contributions to localization and mapping both for

underwater navigation — demonstrating an on-line application — and a vision SLAM

system supporting lifelong operations. Following are the main contributions of the

thesis:
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1. We described an imaging-sonar based SLAM system that was applied to au-

tonomous ship hull inspection.

When operating underwater a sonar system is often the preferred sensor. We

extended our previous work on imaging-sonar aided navigation to support full

6DoF motion, fusion of IMU and pressure measurements, and removing the

assumption of a horizontal sea-floor. Also, we developed a distributed esti-

mation architecture that enabled the inclusion of camera constraints [54] in

addition to the sonar measurements. Finally, the system was demonstrated in

on-line experiments enabling accurate target re-acquisition using the improved

hull navigation.

2. We presented a multi-session feature based SLAM system for an underwater

vehicle equipped with a forward looking sonar.

We presented a method for SLAM using sparse features for underwater navi-

gation. In addition we proposed a global re-alignment method that was then

applied to multi-session mapping. Then, we looked at map merging and how

complexity could be managed by only augmenting the map when new features

were observed. Finally, robustness was provided by maintaining multiple map

representations through each session.

3. We developed a complete pose graph based visual SLAM system. In addition

to stereo-vision and RGB-D, information from sensors such as a robot’s wheel

odometry and IMU can also be incorporated and result in improved robustness

in situations where the vision-only system would fail. We also showed how

elevator transits can be detected — enabling seamless multi-floor mapping.

4. To manage the time complexity of the formulation we proposed and evaluated
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a reduced pose graph model.

The graphical representation of the SLAM problem has many advantages, in-

cluding: retaining sparseness so it is efficient to optimize, individual measure-

ments are kept so it is possible to recover from errors, and the measurements

can be re-linearized as the estimate improves. The downside is that the com-

plexity grows as more variables are added over time. In contrast, the RPG

maintains a minimal representation by partitioning the world. In addition, the

RPG continuously integrates new information as constraints on the existing

nodes and the accuracy of the map improves over time. Finally, the model was

evaluated on an extensive vision dataset collected in the MIT Stata Center.

5. Finally, we presented an efficient GPU based scene prediction algorithm that

was applied to localization using an RGB-D camera.

Motivated by the recent availability of inexpensive RGB-D cameras we explored

their use in localization as a replacement for planar LIDARs which have been

successfully used for localization. In addition the camera is not restricted to

planar motions. By developing an efficient GPU scene prediction algorithm, it

was possible to evaluate the likelihood functions for enough particles to enable

accurate localization.

7.2 Future Work

Even though much progress has been made in solving SLAM, deploying robotics sys-

tems in the field that rely on SLAM for extended duration still eludes us. The mobile

robots that currently operate over long durations typically perform localization using

a prior map, or rely on an external infrastructure to localize.
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The key challenge is robustness. Because in SLAM the map is continuously

updated, one needs to guarantee that errors do not permanently corrupt the map.

Also, the computational complexity must stay within the capability of the robot.

Furthermore, understanding the effects of the feedback from the mapping process to

the robot controller when operating on-line is an important topic.

In most applications we are interested in having the maps as accurate as possible.

The accuracy of the estimation will always depend on the model used, and how

well its assumptions and approximations capture the underlying true distribution.

In the work presented here we have assumed corrupted Gaussian distributions and

independence of measurements. These error distributions are functions of the sensors,

environment, motion, and the algorithm used. Analyzing these distributions to come

up with better approximations would improve the accuracy and robustness of the

overall estimation.

For the best performance the RPG algorithm relies on good tracking, though on

occasion it might loose track of the map, causing it to add unnecessary poses to the

map. This can be resolved by improving the tracking, and by editing the graph to

remove nodes that are not needed.

For underwater applications it would be interesting to explore applying some

of the approaches that have been developed in the vision community to the sonar

imagery, e.g. building descriptors for features in sonar images, and developing a

vocabulary of acoustic words. In the ship hull inspection work the sonar and image

constraints were computed independently of each other. An improvement would

be the ability to obtain correspondences between a sonar and a camera view. The

FBN data shows an example of a target seen at a distance with the sonar, which

then passed directly under the vehicle to be captured on the camera. A constraint

between those two views would provide valuable information in the state estimation.
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For the SLAM problem in general, there are still many challenges. Even though

the work presented in this thesis is considered large scale mapping, the MIT Stata

Center only covers 700,000 sq.ft. The MIT campus consists of 12 million square

feet of floor space, and is only a small part of Cambridge. A typical MIT graduate

student manages to find their way around Cambridge quite effectively, even though

they might make a wrong turn here or there.

The map representation is an important factor for scalability. It must be possible

to store and query the map efficiently, as well as computing the estimation itself. The

representation also affects the robustness of the system and how change is treated.

Looking for a high level description of the environment is interesting here — consid-

ering work from object recognition and visual semantics. In the underwater domain

we might handle features extracted from bio-fouling on the ship hull differently then

the water intake or weld lines. In a dynamic environment a description that is too

detailed will be less useful for localization, as the detailed description is more likely

to change, e.g. the cup might no longer be there, or the chair may now be pushed

back.

When operating over a very long time, there will be gradual changes in the

environment caused by the change of seasons — the tree in winter is the same tree

in summer, but looks differently. Again, the description will have a big impact on

how these changes are treated. Similarly, underwater, a storm will change the sand

ripples, and possibly shift some objects around. Of course in some situations these

changes might actually be the subject of interest. But fully coping with change is

a challenging unresolved problem, in part because it is hard to resolve between a

change in the environment and inaccuracy in the robot’s position estimate.

Perceptual ambiguity is another problem to consider. In our work, combining ap-

pearance based recognition with geometric-verification proved sufficient to re-localize
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the robot if lost, or at the start of a new session. As the robots work in larger areas,

it is unclear if perceptual ambiguity will become more of a problem.

Complex and dynamic environments provide a challenge where other objects or

vehicles block a large portion of the current view, forcing the camera to measure

motion relative to the object in view, which may disagree with other sensors like the

IMU and the DVL (depending on where it is pointing). Fusing these inconsistent

measurements must be avoided. This requires the system to have an improved world

model that can explain these differences. Currently, when using vision, robustness to

moving objects is typically achieved using inlier detection, however that would fail if

that static world were not visible. A good example is being aboard a ship, where the

consequences of the mixed signals from our eyes and our equilibrium sensors often

have ill consequences — though typically we adjust after a while.

In conclusion, we see there are many challenges that need to be addressed before

we achieve a fully autonomous system that can reliably navigate in large scale, com-

plex, dynamic environments over extended period of time. Improved representations,

higher level understanding of the environment, fusion of multiple sensor modalities,

and improved recovery from errors are some of the capabilities that will be required

to meet these challenges.
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